【題目】(1)已知函數(shù),求函數(shù)時(shí)的值域;

(2)函數(shù)有兩個(gè)不同的極值點(diǎn),,

①求實(shí)數(shù)的取值范圍;

②證明:.

(本題中可以參與的不等式:,

【答案】(1)(2)①②詳見解析

【解析】

(1)首先可對(duì)函數(shù)進(jìn)行求導(dǎo),然后分析函數(shù)上的單調(diào)性并求出最值,最后即可求出函數(shù)上的值域;

(2)①首先將“有兩個(gè)不同極值點(diǎn)”轉(zhuǎn)化為“有兩個(gè)不同的正實(shí)根”,再根據(jù)(1)中所給出的函數(shù)性質(zhì)即可得出結(jié)果;

②可利用分析法進(jìn)行證明。

(1),令,

上有,上有,

從而有上為單增函數(shù),在上為單減函數(shù),

,且當(dāng)時(shí),,故函數(shù)的值域?yàn)?/span>;

(2)①

題意有兩個(gè)不同極值點(diǎn)即有兩個(gè)不同的正實(shí)數(shù)根,即有兩個(gè)不同的正實(shí)根,

由(1)題函數(shù)的性質(zhì)知:,故

②由條件有兩個(gè)不同的極值點(diǎn),知:

,于是有

所以,即

要證成立,只需證明

只需證

只需證

只需證

只需證,令,

只需證,,而題中已給出該不等式成立.

即證。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為直線與曲線交于兩點(diǎn).

(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)的極坐標(biāo)為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),直線為平面內(nèi)的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為點(diǎn),且.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過點(diǎn)作兩條互相垂直的直線分別交軌跡四點(diǎn).求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過點(diǎn)且與垂直,垂足為P.

1)當(dāng)時(shí),求l的極坐標(biāo)方程;

2)當(dāng)MC上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)圓P過點(diǎn),且與直線相切,設(shè)動(dòng)圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)過點(diǎn)F的直線交曲線C于A,B兩個(gè)不同的點(diǎn),過點(diǎn)A,B分別作曲線C的切線,且二者相交于點(diǎn)M,若直線的斜率為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評(píng)價(jià)反饋系統(tǒng),以了解用戶對(duì)車輛狀況和優(yōu)惠活動(dòng)的評(píng)價(jià).現(xiàn)從評(píng)價(jià)系統(tǒng)中選出條較為詳細(xì)的評(píng)價(jià)信息進(jìn)行統(tǒng)計(jì),車輛狀況的優(yōu)惠活動(dòng)評(píng)價(jià)的列聯(lián)表如下:

對(duì)優(yōu)惠活動(dòng)好評(píng)

對(duì)優(yōu)惠活動(dòng)不滿意

合計(jì)

對(duì)車輛狀況好評(píng)

對(duì)車輛狀況不滿意

合計(jì)

(1)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為優(yōu)惠活動(dòng)好評(píng)與車輛狀況好評(píng)之間有關(guān)系?

(2)為了回饋用戶,公司通過向用戶隨機(jī)派送每張面額為元,元,元的 三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得元券,獲得元券的概率分別是,且各次獲取騎行券的結(jié)果相互獨(dú)立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當(dāng)天獲得的騎行券面額之和為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班上午有五節(jié)課,分別安排語文,數(shù)學(xué),英語,物理,化學(xué)各一節(jié)課.要求語文與化學(xué)相鄰,數(shù)學(xué)與物理不相鄰,且數(shù)學(xué)課不排第一節(jié),則不同排課法的種數(shù)是

A. 24B. 16C. 8D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201910月,德國(guó)爆發(fā)出芳香烴門事件,即一家權(quán)威的檢測(cè)機(jī)構(gòu)在德國(guó)銷售的奶粉中隨機(jī)抽檢了16(德國(guó)4款,法國(guó)8款,荷蘭4),其中8款檢測(cè)出芳香烴礦物油成分,此成分會(huì)嚴(yán)重危害嬰幼兒的成長(zhǎng),有些奶粉已經(jīng)遠(yuǎn)銷至中國(guó).A地區(qū)聞?dòng)嵑螅⒓唇M織相關(guān)檢測(cè)員對(duì)這8款品牌的奶粉進(jìn)行抽檢,已知該地區(qū)有6家嬰幼兒用品商店在售這幾種品牌的奶粉,甲、乙、丙3名檢測(cè)員分別負(fù)責(zé)進(jìn)行檢測(cè),每人至少抽檢1家商店,且檢測(cè)過的商店不重復(fù)檢測(cè),則甲檢測(cè)員檢測(cè)2家商店的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知直線與曲線相切于兩點(diǎn),則對(duì)于函數(shù),以下結(jié)論成立的是(

A.3個(gè)極大值點(diǎn),2個(gè)極小值點(diǎn)B.2個(gè)零點(diǎn)

C.2個(gè)極大值點(diǎn),沒有極小值點(diǎn)D.沒有零點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案