【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式;
(3)設(shè)函數(shù) ,若對(duì)任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:∵函數(shù)f(x)=ax2﹣x+2a﹣1(a>0)的圖象是開口朝上,且以直線x= 為對(duì)稱軸的拋物線,

若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù)

,

解得:


(2)解:①當(dāng)0< <1,即a> 時(shí),f(x)在區(qū)間[1,2]上為增函數(shù),

此時(shí)g(a)=f(1)=3a﹣2

②當(dāng)1≤ ≤2,即 時(shí),f(x)在區(qū)間[1, ]是減函數(shù),在區(qū)間[ ,2]上為增函數(shù),

此時(shí)g(a)=f( )=

③當(dāng) >2,即0<a< 時(shí),f(x)在區(qū)間[1,2]上是減函數(shù),

此時(shí)g(a)=f(2)=6a﹣3

綜上所述:


(3)解:對(duì)任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,

即f(x)min≥h(x)max,

由(2)知,f(x)min=g(a)

又因?yàn)楹瘮?shù) ,

所以函數(shù)h(x)在[1,2]上為單調(diào)減函數(shù),所以 ,

①當(dāng) 時(shí),由g(a)≥h(x)max得: ,解得 ,(舍去)

②當(dāng) 時(shí),由g(a)≥h(x)max得: ,即8a2﹣2a﹣1≥0,

∴(4a+1)(2a﹣1)≥0,解得

所以

③當(dāng) 時(shí),由g(a)≥h(x)max得: ,解得 ,

所以a

綜上所述:實(shí)數(shù)a的取值范圍為


【解析】(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),則 ,解得a的取值范圍;(2)分類討論給定區(qū)間與對(duì)稱軸的關(guān)系,分析出各種情況下g(x)的表達(dá)式,綜合討論結(jié)果,可得答案;(3)不等式f(x1)≥h(x2)恒成立,即f(x)min≥h(x)max , 分類討論各種情況下實(shí)數(shù)a的取值,綜合討論結(jié)果,可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】輪船從某港口將一些物品送到正航行的輪船上,在輪船出發(fā)時(shí),輪船位于港口北偏西且與相距20海里的處,并正以30海里的航速沿正東方向勻速行駛,假設(shè)輪船沿直線方向以海里/小時(shí)的航速勻速行駛,經(jīng)過小時(shí)與輪船相遇.

(1)若使相遇時(shí)輪船航距最短,則輪船的航行速度大小應(yīng)為多少?

(2)假設(shè)輪船的最高航速只能達(dá)到30海里/小時(shí),則輪船以多大速度及什么航行方向才能在最短時(shí)間與輪船相遇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿足an=4log2bn+3,n∈N.

(1)求an,bn;

(2)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)為奇函數(shù),且f(x)在(﹣∞,0)內(nèi)是增函數(shù),f(﹣2)=0,則xf(x)>0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率是,過點(diǎn)的動(dòng)直線與橢圓相交于 兩點(diǎn),當(dāng)直線平行于軸時(shí),直線被橢圓截得的線段長(zhǎng)為

(1)求橢圓的方程;

(2)當(dāng)時(shí),求直線的方程;

(3)記橢圓的右頂點(diǎn)為,點(diǎn))在橢圓上,直線軸于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,直線軸于點(diǎn).問: 軸上是否存在點(diǎn),使得為坐標(biāo)原點(diǎn))?若存在,求點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,函數(shù)f(x)=lg(4﹣x)﹣ 的定義域?yàn)榧螦,集合B={x|﹣2<x<a}.
(1)求集合UA;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,雙曲線 ,若以的長(zhǎng)軸為直徑的圓與的一條漸近線交于AB兩點(diǎn),且橢圓與該漸近線的兩交點(diǎn)將線段AB三等分,則的離心率是

A. B. 3 C. D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣ 為奇函數(shù).
(1)求a的值;
(2)試判斷函數(shù)f(x)在(﹣∞,+∞)上的單調(diào)性,并證明你的結(jié)論;
(3)若對(duì)任意的t∈R,不等式f[t2﹣(m﹣2)t]+f(t2﹣m+1)>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】孝感車天地關(guān)于某品牌汽車的使用年限(年)和所支出的維修費(fèi)用(千元)由如表的統(tǒng)計(jì)資料:

2

3

4

5

6

2.1

3.4

5.9

6.6

7.0

(1)畫出散點(diǎn)圖并判斷使用年限與所支出的維修費(fèi)用是否線性相關(guān);如果線性相關(guān),求回歸直線方程;

(2)若使用超過8年,維修費(fèi)用超過1.5萬(wàn)元時(shí),車主將處理掉該車,估計(jì)第10年年底時(shí),車主是否會(huì)處理掉該車?

查看答案和解析>>

同步練習(xí)冊(cè)答案