若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同效函數(shù)”,例如函數(shù)y=x2,x∈[1,2]與函數(shù)y=x2,x∈[-2,-1]即為“同效函數(shù)”.請(qǐng)你找出下面函數(shù)解析式中能夠被用來(lái)構(gòu)造“同效函數(shù)”的是( 。
分析:由題意,能夠被用來(lái)構(gòu)造“同效函數(shù)”的函數(shù)必須滿足在其定義域上不單調(diào).由此判斷各個(gè)函數(shù)在其定義域上的單調(diào)性,即可得到A、C、D中的函數(shù)不符合題意,而B中的函數(shù)在其定義域上不是單調(diào)函數(shù),符合題意.
解答:解:根據(jù)題意,“同效函數(shù)”需滿足:對(duì)于同一函數(shù)值,有不同的自變量與其對(duì)應(yīng).
因此,能夠被用來(lái)構(gòu)造“同效函數(shù)”的函數(shù)必須滿足在其定義域上不單調(diào).
∵函數(shù)y=x在(-∞,+∞)上是增函數(shù),∴y=x不能夠被用來(lái)構(gòu)造“同效函數(shù)”,故A不正確;
∵函數(shù)y=
x
x2+1
在(-∞,-1),(1,+∞)上是減函數(shù),在(-1,0),(0,1)上是增函數(shù),
∴y=
x
x2+1
能夠被用來(lái)構(gòu)造“同效函數(shù)”,故B正確;
∵函數(shù)y=2x-2-x在(-∞,+∞)上是增函數(shù);
∴y=2x-2-x不能夠被用來(lái)構(gòu)造“同效函數(shù)”,故C不正確;
∵函數(shù)y=lg(3x+9)在(-3,+∞)上是增函數(shù),
∴y=lg(3x+9)不能夠被用來(lái)構(gòu)造“同效函數(shù)”,故D不正確.
故選:B.
點(diǎn)評(píng):本題考查了函數(shù)的定義域及其值域,考查了函數(shù)的單調(diào)性,是新定義題,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

150、若一系列函數(shù)的解析式和值域相同,但定義域互不相同,則稱這些函數(shù)為“同族函數(shù)”.例如函數(shù)y=x2,x∈[1,2]與y=x2,x∈[-2,-1]即為“同族函數(shù)”、下面6個(gè)函數(shù):①y=tanx;②y=cosx;③y=x3;④y=2x;⑤y=lgx;⑥y=x4.其中能夠被用來(lái)構(gòu)造“同族函數(shù)”的有
①②⑥

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一系列函數(shù)的解析式相同,值域相同,但其定義域不同,則稱這一系列函數(shù)為“同族函數(shù)”,試問(wèn)解析式為y=x2,值域?yàn)閧1,2}的“同族函數(shù)”共有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,那么函數(shù)解析式為y=2x2-1,值域?yàn)閧1,7}的“孿生函數(shù)”共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•湖北模擬)若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,例如解析式為y=2x2+1,值域?yàn)閧9}的“孿生函數(shù)”三個(gè):
(1)y=2x2+1,x∈{-2};(2)y=2x2+1,x∈{2};(3)y=2x2+1,x∈{-2,2}.
那么函數(shù)解析式為y=2x2+1,值域?yàn)閧1,5}的“孿生函數(shù)”共有(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案