已知函數(shù)f(x)=x3-3ax,
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當a=1時,求證:直線4x+y+m=0不可能是函數(shù)f(x)圖象的切線.
分析:(1)對函數(shù)f(x)進行求導(dǎo),導(dǎo)函數(shù)大于0時可求原函數(shù)的增區(qū)間,導(dǎo)函數(shù)小于0時可求原函數(shù)的減區(qū)間.
(2)將a=1代入函數(shù)確定解析式,然后對函數(shù)f(x)進行求導(dǎo),可發(fā)現(xiàn)導(dǎo)函數(shù)不可能等于-4從而得證.
解答:解:(1)∵f′(x)=3x2-3a=3(x2-a),
當a≤0時,f′(x)=3x2-3a≥0對x∈R恒成立,
∴f(x)的遞增區(qū)間為(-∞,+∞).
當a>0時,由f′(x)>0,得x<-
a
或x>
a

由f′(x)<0,得-
a
<x<
a

此時,f(x)的遞增區(qū)間是(-∞,-
a
)和(
a
,+∞);
遞減區(qū)間是(-
a
a
).
(2)證明:∵a=1,∴f′(x)=3x2-3.
直線4x+y+m=0的斜率為-4,假設(shè)f′(x)=-4,即3x2+1=0.
此方程無實根,∴直線4x+y+m=0不可能是函數(shù)f(x)圖象的切線.
點評:本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負之間的關(guān)系,即當導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案