【題目】已知函數(shù)f(x)=eax﹣x. (Ⅰ)若曲線y=f(x)在(0,f(0))處的切線l與直線x+2y+3=0垂直,求a的值;
(Ⅱ)當(dāng)a≠1時(shí),求證:存在實(shí)數(shù)x0使f(x0)<1.
【答案】(Ⅰ)解:f'(x)=aeax﹣1,
∵曲線y=f(x)在(0,f(0))處的切線與直線x+2y+3=0垂直,
∴切線l的斜率為2,
∴f'(0)=a﹣1=2,
∴a=3;
(Ⅱ)證明:當(dāng)a≤0時(shí),顯然有f(1)<ea﹣1≤0<1,即存在實(shí)數(shù)x0使f(x0)<1;
當(dāng)a>0,a≠1時(shí),由f'(x)=0可得 ,
∴在 時(shí),f'(x)<0,∴函數(shù)f(x)在 上遞減;
時(shí),f'(x)>0,∴函數(shù)f(x)在 上遞增.
∴ = 是f(x)的極小值.
設(shè) ,則 ,令g'(x)=0,得x=1.
x | (0,1) | 1 | (1,+∞) |
g'(x) | + | 0 | ﹣ |
g(x) | ↗ | 極大值 | ↘ |
∴當(dāng)x≠1時(shí)g(x)<g(1)=1,
∴ ,
綜上,若a≠1,存在實(shí)數(shù)x0使f(x0)<1
【解析】(Ⅰ)求出原函數(shù)的導(dǎo)函數(shù),結(jié)合曲線y=f(x)在(0,f(0))處的切線l與直線x+2y+3=0垂直,求a的值;(Ⅱ)當(dāng)a≤0時(shí),有f(1)<ea﹣1≤0<1,即存在實(shí)數(shù)x0使f(x0)<1;當(dāng)a>0,a≠1時(shí),求出導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對(duì)定義域分段,由單調(diào)性求出函數(shù)的極小值,再由導(dǎo)數(shù)求出極小值的最大值得答案.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:函數(shù)f(x)=(m2﹣1) 上為增函數(shù);命題q:函數(shù)g(x)=x2﹣2elnx﹣m有零點(diǎn).
(I)若p∨q為假命題,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要想得到函數(shù) 的圖象,只需將函數(shù)y=sinx的圖象上所有的點(diǎn)( )
A.先向右平移 個(gè)單位長(zhǎng)度,再將橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變
B.先向右平移 個(gè)單位長(zhǎng)度,橫坐標(biāo)縮短為原來(lái)的 倍,縱坐標(biāo)不變
C.橫坐標(biāo)縮短為原來(lái)的 倍,縱坐標(biāo)不變,再向右平移 個(gè)單位長(zhǎng)度
D.橫坐標(biāo)變伸長(zhǎng)原來(lái)的2倍,縱坐標(biāo)不變,再向右平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)半徑不等的圓盤疊放在一起(有一軸穿過(guò)它們的圓心),兩圓盤上分別有互相垂直的兩條直徑將其分為四個(gè)區(qū)域,小圓盤上所寫的實(shí)數(shù)分別記為x1 , x2 , x3 , x4 , 大圓盤上所寫的實(shí)數(shù)分別記為y1 , y2 , y3 , y4 , 如圖所示.將小圓盤逆時(shí)針旋轉(zhuǎn)i(i=1,2,3,4)次,每次轉(zhuǎn)動(dòng)90° , 記Ti(i=1,2,3,4)為轉(zhuǎn)動(dòng)i次后各區(qū)域內(nèi)兩數(shù)乘積之和,例如T1=x1y2+x2y3+x3y4+x4y1 . 若x1+x2+x3+x4<0,y1+y2+y3+y4<0,則以下結(jié)論正確的是( )
A.T1 , T2 , T3 , T4中至少有一個(gè)為正數(shù)
B.T1 , T2 , T3 , T4中至少有一個(gè)為負(fù)數(shù)
C.T1 , T2 , T3 , T4中至多有一個(gè)為正數(shù)
D.T1 , T2 , T3 , T4中至多有一個(gè)為負(fù)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}的公比q=2,前3項(xiàng)和是7,等差數(shù)列{bn}滿足b1=3,2b2=a2+a4 . (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列 的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx﹣ )(ω>0)的圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為 .
(1)求w的值;
(2)設(shè)函數(shù)g(x)=f(x)+2cos2x﹣1,求g(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G為線段AD上的任意一點(diǎn).
(1)若M是線段EF的中點(diǎn),證明:平面AMG⊥平面BDF;
(2)若N為線段EF上任意一點(diǎn),設(shè)直線AN與平面ABF,平面BDF所成角分別是α,β,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程: (t為參數(shù)),曲線C的參數(shù)方程: (α為參數(shù)),且直線交曲線C于A,B兩點(diǎn).
(Ⅰ)將曲線C的參數(shù)方程化為普通方程,并求θ= 時(shí),|AB|的長(zhǎng)度;
(Ⅱ)已知點(diǎn)P:(1,0),求當(dāng)直線傾斜角θ變化時(shí),|PA||PB|的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com