計算:1•2•3…k+2•3•4…(k+1)+…n(n+1)(n+2)…(n+k-1)(k≥3,k∈N).
分析:把原式中的每一項變形整理,通過裂項法變換成前后兩項能合并的形式,把所有的式子累加,式子左邊是我們要求的結(jié)果,右邊是合并以后的式子得到的結(jié)果.
解答:解:1×2×3×4×…k=[1×2×3…k(k+1)]÷(k+1)
2×3×4×…×k(k+1)=
-1×2×3×…k(k+1)+2×3×4×…×(k+1)(k+2)
k+1


n(n+1)…(n+k-1)=
-(n-1)n(n+1)…(n+k-1)+n(n+1)…(k+n)
k+1

將上面各式求和,得到原式=
n(n+1)(n+2)…(k+2)
k+1
點評:本題關(guān)鍵是式子變形,通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴謹治學(xué)的態(tài)度.在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在計算“1×2+2×3+…+n(n+1)”時,某同學(xué)學(xué)到了如下一種方法:先改寫第k項:k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)]由此得
1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3)

n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)]
相加,得1×2×3+…+n(n+1)=
1
3
n(n+1)(n+2)
類比上述方法,請你計算“1×2×3+2×3×4+…+n(n+1)(n+2)”,

其結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當正三角形的邊長為n(n∈N*)時,圖(1)中點的個數(shù)為f3(n)=1+2+3+…+(n+1)=
1
2
(n+1)(n+2);當正方形的邊長為n時,圖(2)中點的個數(shù)為f4(n)=(n+1)2;在計算圖(3)中邊長為n的正五邊形中點的個數(shù)f5(n)時,觀察圖(4)可得f5(n)=f4(n)+f3(n-1)=(n+1)2+
n(n+1)
2
=
1
2
(n+1)(3n+2);….則邊長為n的正k邊形(k≥3,k∈N)中點的個數(shù)fk(n)=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在計算“1×2+2×3+…n(n+1)”時,先改寫第k項:
k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=
1
3
(1×2×3-0×1×2),2×3=
1
3
(2×3×4-1×2×3),..
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)

(1)類比上述方法,請你計算“1×2×3+2×3×4+…+n(n+1)(n+2)”的結(jié)果;
(2)試用數(shù)學(xué)歸納法證明你得到的等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•長春模擬)某學(xué)校為了研究學(xué)情,從高三年級中抽取了20名學(xué)生三次測試的數(shù)學(xué)成績和物理成績,計算出了他們?nèi)纬煽兊钠骄稳缦卤恚?br />
學(xué)生序號 1 2 3 4 5 6 7 8 9 10
數(shù)    學(xué) 1.3 12.3 25.7 36.7 50.3 67.7 49.0 52.0 40.0 34.3
物    理 2.3 9.7 31.0 22.3 40.0 58.0 39.0 60.7 63.3 42.7
學(xué)生序號 11 12 13 14 15 16 17 18 19 20
數(shù)    學(xué) 78.3 50.0 65.7 66.3 68.0 95.0 90.7 87.7 103.7 86.7
物    理 49.7 46.7 83.3 59.7 50.0 101.3 76.7 86.0 99.7 99.0
學(xué)校規(guī)定平均名次小于或等于40.0者為優(yōu)秀,大于40.0者為不優(yōu)秀.
(1)對名次優(yōu)秀者賦分2,對名次不優(yōu)秀者賦分1,從這20名學(xué)生中隨機抽取2名,用ξ表示這兩名學(xué)生數(shù)學(xué)科得分的和,求ξ的分布列和數(shù)學(xué)期望;
(2)根據(jù)這次抽查數(shù)據(jù),是否在犯錯誤的概率不超過0.025的前提下認為物理成績優(yōu)秀與否和數(shù)學(xué)成績優(yōu)秀與否有關(guān)系?(下面的臨界值表和公式可供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊答案