2.已知定義在R上的偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,且f(1)=0,則不等式f(x-2)≥0的解集是{x|x≥3或x≤1}.

分析 根據(jù)函數(shù)的奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化,即可得到不等式的解集.

解答 解:∵偶函數(shù)f(x)在[0,+∞)上為增函數(shù),f(1)=0,
∴不等式f(x-2)≥0等價(jià)為f(|x-2|)≥f(1),
即|x-2|≥1,
即x-2≥1或x-2≤-1,
即x≥3或x≤1,
故不等式的解集為{x|x≥3或x≤1},
故答案為:{x|x≥3或x≤1}.

點(diǎn)評(píng) 本題主要考查不等式的解法,利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵,綜合考查函數(shù)性質(zhì)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤3x-2}\\{x-2y+1≤0}\\{2x+y≤8}\end{array}\right.$,則$\frac{y}{x-1}$的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖是一個(gè)四面體的三視圖,則其外接球的體積為( 。
A.8$\sqrt{6}π$B.$\sqrt{6}π$C.4$\sqrt{3}π$D.$\sqrt{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD對(duì)折,使得平面BCD⊥平面ABD,點(diǎn)E是BD中點(diǎn),點(diǎn)F滿足:FA∥CE,且$FA=2\sqrt{2}$.
(Ⅰ)求證:AB∥平面CDF;
(Ⅱ)求二面角A-FC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知e為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率,點(diǎn)(1,e)和$(e\;,\frac{{\sqrt{3}}}{2})$都在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)點(diǎn)M(2,0)的直線l與橢圓相交于A、B點(diǎn),在直線x+y-1=0存在點(diǎn)P,使得$\overrightarrow{OA}+\overrightarrow{OB}=\frac{4}{3}\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{{1-{a^2}}}=1$(a>0)的離心率為$\sqrt{2}$,則a的值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.不等式|x-1|+|x+1|≤3的解集為[-$\frac{3}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列說(shuō)法中,不正確的是( 。
A.已知a,b,m∈R,命題“若am2<bm2,則a<b”為真命題
B.命題“?x0∈R,x02-x0>0”的否定是:“?x∈R,x2-x≤0”
C.命題“p或q”為真命題,則命題p和q命題均為真命題
D.“x>3”是“x>2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在復(fù)平面內(nèi),復(fù)數(shù)z=1-2i對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(  )
A.(1,2)B.(2,1)C.(1,-2)D.(2,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案