12、若函數(shù)f(x)的定義域為[-1,2],則函數(shù)f(3-|x|)的定義域是
[-4,-1]∪[1,4]
分析:由函數(shù)的定義域為[-1,2]得到3-|x|∈[-1,2],討論化簡絕對值求出x的范圍即為函數(shù)f(3-|x|)的定義域.
解答:解:∵f(x)的定義域為[-1,2],
∴-1≤3-|x|≤2即1≤|x|≤4,
當x>0時,1≤x≤4即x∈[1,4];
當x<0時,1≤-x≤4,解得-4≤x≤-1即x∈[-4,-1]
所以函數(shù)f(3-|x|)的定義域是[-4,-1]∪[1,4]
故答案為[-4,-1]∪[1,4]
點評:本題為基礎(chǔ)題,要求學生理解函數(shù)的定義域、掌握函數(shù)定義域的求法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使得(x-1)f(x)<0的x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使得f(x-1)<0的x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(1)=0,則使得f(x)<0的x得取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:
①若函數(shù)f(x)的定義域為R,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若f(x)是定義域為R的奇函數(shù),對于任意的x∈R都有f(x)+f(2+x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個值,且x1<x2,若f(x1)>f(x2),則f(x)是減函數(shù);
④若f(x)是定義在R上的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos2x+sinx
(Ⅰ)若函數(shù)f(x)的定義為R,求函數(shù)f(x)的值域;
(Ⅱ)函數(shù)f(x)在區(qū)間[0,
π2
]
上是不是單調(diào)函數(shù)?請說明理由.

查看答案和解析>>

同步練習冊答案