數(shù)列{an}的的首項為3,{bn}為等差數(shù)列且bn=an+1-an(n∈N*),若b3=-2,b10=12,則a8=________

[  ]

A.0

B.3

C.8

D.11

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
x
+
2
)2(x>0)
,設(shè)正項數(shù)列an的首項a1=2,前n 項和Sn滿足Sn=f(Sn-1)(n>1,且n∈N*).
(1)求an的表達式;
(2)在平面直角坐標(biāo)系內(nèi),直線ln的斜率為an,且ln與曲線y=x2相切,ln又與y軸交于點Dn(0,bn),當(dāng)n∈N*時,記dn=
1
4
|
Dn+1Dn
|-1
,若Cn=
d
2
n+1
+
d
2
n
2dn+1dn
,求數(shù)列cn的前n 項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x
4x+1
,數(shù)列{an}的首項a1=1,an+1=f(an)(n∈N*)
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
2n
an
,數(shù)列{bn}的前n項和為Sn,求使Sn>2012的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寶山區(qū)一模)函數(shù)是這樣定義的:對于任意整數(shù)m,當(dāng)實數(shù)x滿足不等式|x-m|<
1
2
時,有f(x)=m.
(1)求函數(shù)的定義域D,并畫出它在x∈D∩[0,4]上的圖象;
(2)若數(shù)列an=2+10•(
2
5
)n
,記Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn;
(3)若等比數(shù)列{bn}的首項是b1=1,公比為q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前N項和為Sn,且滿足S1=2,Sn+1=3Sn+2(n=1,2,3…).
(Ⅰ)求證:數(shù)列{Sn+1}為等比數(shù)列;
(Ⅱ)求通項公式an;
(Ⅲ)若數(shù)列{
bnan
}是首項為1,公差為2的等差數(shù)列,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

同步練習(xí)冊答案