已知:函數(shù)f(x)=psinωx•cosωx-cos2ωx(p>0,ω>0)的最大值為數(shù)學(xué)公式,最小正周期為數(shù)學(xué)公式
(1)求:p,ω的值,f(x)的解析式;
(2)若△ABC的三條邊為a,b,c,滿足a2=bc,a邊所對的角為A.求:角A的取值范圍及函數(shù)f(A)的值域.

解:(1)
,得ω=2(2分)
及p>0,得(4分)∴(6分)
(2).(8分)
A為三角形內(nèi)角,所以(10分)
,,∴(14分)
分析:(1)化簡函數(shù)為一個角的一個三角函數(shù)的形式,通過最大值和周期,求出p和ω,得到函數(shù)的解析式.
(2)利用余弦定理和基本不等式,求出cosA的最小值,確定A的范圍,然后利用正弦函數(shù)的值域,求出函數(shù)f(A)的值域.
點評:本題是中檔題,考查三角函數(shù)的化簡求值,解三角形的有關(guān)知識,余弦定理的應(yīng)用,注意解答范圍和三角函數(shù)的值域的關(guān)系,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是減函數(shù),f(1)=0,又有函數(shù)g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域為(-1,1),當(dāng)x∈(0,1)時,f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=xa的圖象過點(
1
2
,
2
2
)
,則f(x)在(0,+∞)單調(diào)遞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=x3-6x2+3x+t,t∈R.
(1)①證明:a3-b3=(a-b)(a2+ab+b2
②求函數(shù)f(x)兩個極值點所對應(yīng)的圖象上兩點之間的距離;
(2)設(shè)函數(shù)g(x)=exf(x)有三個不同的極值點,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案