4.記${\left.{\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|_m}$=a0+a1×m+…+an-1×mn-1+an×mn,其中n≤m,m、n均為正整數(shù),ak∈{0,1,2,…,m-1}(k=0,1,2,…,n)且an≠0;
(1)計(jì)算${\left.{\overline{2016}}\right|_7}$=699;
(2)設(shè)集合A(m,n)=$\left\{{{{\left.{\left.x\right|x=\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|}_m}}\right\}$,則A(m,n)中所有元素之和為$\frac{{({{m^{n+1}}+{m^n}-1})({{m^{n+1}}-{m^n}})}}{2}$.

分析 (1)${\left.{\overline{2016}}\right|_7}$=6+1×7+2×73=699;
(2)分別求出含有a1、…、an-1,an的項(xiàng)共有m•mn-1(m-1)項(xiàng)及和,即可得出結(jié)論.

解答 解:(1)${\left.{\overline{2016}}\right|_7}$=6+1×7+2×73=699;
(2)由題意,a0、a1、…、an-1,各有m種取法,an有m-1中取法.
a0=0,1,2,…m-1時(shí),a1、…、an-1,各有m種取法,an有m-1中取法,
所以含有a0的項(xiàng)共有mn-1(m-1)項(xiàng),和為(0+1+2+…+m-1)mn-1(m-1)=$\frac{m(m-1)}{2}$mn-1(m-1),
同理a1=0,1,2,…m-1時(shí),a0、a2、…、an-1,各有m種取法,an有m-1中取法,
所以含有a1的項(xiàng)共有m•mn-1(m-1)項(xiàng),和為(0+1+2+…+m-1)mn-1(m-1)=$\frac{m(m-1)}{2}$m•mn-1(m-1),

an=1,2,…m-1時(shí),a0、a1、…、an-1,各有m種取法,
所以含有an的項(xiàng)共有mn•mn項(xiàng),和為(1+2+…+m-1)mn•mn=$\frac{m(m-1)}{2}$•mn•mn
所以所有元素之和為$\frac{m(m-1)}{2}$mn-1(m-1)(1+m+…+mn)+$\frac{m(m-1)}{2}$mnmn=$\frac{{({{m^{n+1}}+{m^n}-1})({{m^{n+1}}-{m^n}})}}{2}$.
故答案為:699;$\frac{{({{m^{n+1}}+{m^n}-1})({{m^{n+1}}-{m^n}})}}{2}$.

點(diǎn)評 本題考查新定義,考查數(shù)列的求和公式,考查學(xué)生分析解決問題的能力,難度大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=4+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=4cosθ,直線l與圓C交于M,N兩點(diǎn).
(Ⅰ)求圓C和直線l的普通方程;
(Ⅱ)求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四面體P-ABC,底面ABC是邊長為1的正三角形,AB⊥BP,點(diǎn)P在底面ABC上的射影為H,BH=$\frac{\sqrt{3}}{3}$,平面ACP與平面PBH所成的銳二面角的余弦值為$\frac{\sqrt{6}}{3}$.
(1)求證:PA⊥BC;
(2)求二面角C-AB-P的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.多面體的三視圖如圖所示,則該多面體的體積為( 。
A.$\frac{16\sqrt{2}}{3}$cm3B.$\frac{32}{3}$cm3C.16$\sqrt{2}$cm3D.32cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的周期為π,且圖象上有一個(gè)最低
點(diǎn)為M($\frac{2π}{3}$,-3).
(1)求f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在平行四邊形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AN}=3\overrightarrow{NC}$,則$\overrightarrow{BN}$=( 。
A.$\frac{3}{4}\overrightarrow b+\frac{1}{4}\overrightarrow a$B.$\frac{1}{4}\overrightarrow b+\frac{3}{4}\overrightarrow a$C.$\frac{3}{4}\overrightarrow b-\frac{1}{4}\overrightarrow a$D.$\frac{1}{4}\overrightarrow b-\frac{3}{4}\overrightarrow a$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(-1,4]時(shí),f(x)=x2-2x,則函數(shù)f(x)在區(qū)間[0,2016]上的零點(diǎn)個(gè)數(shù)是605.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)z=$\frac{3}{2}$x+y,其中x,y滿足$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤k.\end{array}$,若z的最大值為6,則z=$\frac{3}{2}$x+y的最小值為$-\frac{24}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知α,β是關(guān)于x的一元二次方程x2+(2m+3)x+m2=0的兩個(gè)不相等的實(shí)數(shù)根,且滿足$\frac{1}{α}$+$\frac{1}{β}$=-1,則m的值是( 。
A.3或-1B.3C.1D.-3或1

查看答案和解析>>

同步練習(xí)冊答案