【題目】已知命題p:點(diǎn)M(1,3)不在圓(x+m)2+(y﹣m)2=16的內(nèi)部,命題q:“曲線 表示焦點(diǎn)在x軸上的橢圓”,命題s:“曲線 表示雙曲線”.
(1)若“p且q”是真命題,求m的取值范圍;
(2)若q是s的必要不充分條件,求t的取值范圍.
【答案】
(1)解:若p為真:(1+m)2+(3﹣m)2≥16
解得m≤﹣1或m≥3,
若q為真:則
解得﹣4<m<﹣2或m>4
若“p且q”是真命題,
則 ,
解得﹣4<m<﹣2或m>4;
(2)解:若s為真,則(m﹣t)(m﹣t﹣1)<0,
即t<m<t+1,
由q是s的必要不充分條件,
則可得{m|t<m<t+1} {m|﹣4<m<﹣2或m>4},
即 或t≥4,
解得﹣4≤t≤﹣3或t≥4.
【解析】(1)分別求出p,q為真時(shí)的m的范圍,根據(jù)“p且q”是真命題,得到關(guān)于m的不等式組,解出即可;(2)先求出s為真時(shí)的m的范圍,結(jié)合q是s的必要不充分條件,得到關(guān)于t的不等式組,解出即可.
【考點(diǎn)精析】通過靈活運(yùn)用復(fù)合命題的真假,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,0)對稱,且當(dāng)x∈[1,2]時(shí),f(x)=﹣2x+2,若函數(shù)y=f(x)﹣loga(|x|+1)恰好有8個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)已知函數(shù)f(x)=2x+ (x>0),證明函數(shù)f(x)在(0, )上單調(diào)遞減,并寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)記函數(shù)g(x)=a|x|+2ax(a>1) ①若a=4,解關(guān)于x的方程g(x)=3;
②若x∈[﹣1,+∞),求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù)y=2sin2x的圖象向左平移 個(gè)單位長度,則平移后的圖象的對稱軸為( )
A.x= ﹣ (k∈Z)
B.x= + (k∈Z)
C.x= ﹣ (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高校自主招生中,某學(xué)校獲得5個(gè)推薦名額,其中清華大學(xué)2名,北京大學(xué)2名,復(fù)旦大學(xué)1名.并且北京大學(xué)和清華大學(xué)都要求必須有男生參加.學(xué)校通過選拔定下3男2女共5個(gè)推薦對象,則不同的推薦方法共有( )
A.20種
B.22種
C.24種
D.36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,BC= ,AB=CC1=2,∠BCC1= ,點(diǎn)E在棱BB1上.
(1)求C1B的長,并證明C1B⊥平面ABC;
(2)若BE=λBB1 , 試確定λ的值,使得二面角A﹣C1E﹣C的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=x2﹣2ax+5.
(1)若a>1,且函數(shù)f(x)的定義域和值域均為[1,a],求實(shí)數(shù)a的值;
(2)若不等式x|f(x)﹣x2|≤1對x∈[ , ]恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知側(cè)棱垂直底面的三棱柱ABC﹣A1B1C1中,AC=3,AB=5,BC=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC;
(2)求證:AC1∥平面CDB1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , 滿足| |=| =1,且|k + |= | ﹣k |(k>0),令f(k)= . (Ⅰ)求f(k)= (用k表示);
(Ⅱ)若f(k)≥x2﹣2tx﹣ 對任意k>0,任意t∈[﹣1,1]恒成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com