【題目】如圖,直棱柱ABC-A1B1C1的底面△ABC中,CA=CB=1,∠ACB=90°,棱AA1=2,如圖,以C為原點(diǎn),分別以CA,CB,CC1為x,y,z軸建立空間直角坐標(biāo)系.
(1)求平面A1B1C的法向量;
(2)求直線AC與平面A1B1C夾角的正弦值.
【答案】(1);(2)
【解析】
(1)v=(x0,y0,z0)為平面A1B1C的法向量,則v·=x0+2z0=0,v· =y0+2z0=0,解方程組即得平面A1B1C的法向量.(2)利用向量法求直線AC與平面A1B1C夾角的正弦值.
(1)由題意可知C(0,0,0),A1(1,0,2),B1(0,1,2),故=(1,0,2),=(0,1,2),
設(shè)v=(x0,y0,z0)為平面A1B1C的法向量,則
v·=(x0,y0,z0)(1,0,2)=x0+2z0=0,
v·=(x0,y0,z0)(0,1,2)=y0+2z0=0,
即令z0=1,則v=(-2,-2,1).
(2)設(shè)直線AC與平面A1B1C夾角為θ,而=(1,0,0),
所以直線AC與平面A1B1C夾角的正弦值sinθ
=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點(diǎn)為F的拋物線x2=2py(p>0)交于A,B兩點(diǎn),若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px過(guò)點(diǎn)P(1,1).過(guò)點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過(guò)點(diǎn)M作x軸的垂線分別與直線OP、ON交于點(diǎn)A,B,其中O為原點(diǎn).(14分)
(1)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)求證:A為線段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一個(gè)平面內(nèi),向量 , , 的模分別為1,1, , 與 的夾角為α,且tanα=7, 與 的夾角為45°.若 =m +n (m,n∈R),則m+n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)2的正方形,E,F(xiàn)分別為線段DD1,BD的中點(diǎn).
(1)求證:EF∥平面ABC1D1;
(2)AA1=2,求異面直線EF與BC所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ae2x+(a﹣2)ex﹣x.(12分)
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com