精英家教網 > 高中數學 > 題目詳情
已知a、b、c為互不相等的正數且abc=1,求證:

++++.

證明:結論++<bc+ac+ab2+2+2<2bc+2ac+2ab.

    因為a、b、c為互不相等正數且abc=1,

    所以bc+ac>2=2.

    ac+ab>2,ab+bc>2.

    所以2+2+2<2bc+2ac+2ab.

    所以原不等式成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a,b,c為互不相等的三個正數,函數f(x)可能滿足如下性質:
①f(x-a)為奇函數;②f(x+a)為奇函數;③f(x-b)為偶函數;④f(x+b)為偶函數.
類比函數y=sinx的對稱中心、對稱軸與周期的關系,某同學得出了如下結論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結論的個數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知a,b,c為互不相等的三個正數,函數f(x)可能滿足如下性質:
①f(x-a)為奇函數;②f(x+a)為奇函數;③f(x-b)為偶函數;④f(x+b)為偶函數.
類比函數y=sinx的對稱中心、對稱軸與周期的關系,某同學得出了如下結論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結論的個數是


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知a,b,c為互不相等的三個正數,函數f(x)可能滿足如下性質:
①f(x-a)為奇函數;②f(x+a)為奇函數;③f(x-b)為偶函數;④f(x+b)為偶函數.
類比函數y=sinx的對稱中心、對稱軸與周期的關系,某同學得出了如下結論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結論的個數是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源:2012-2013學年北京市十一學校高三(上)暑期檢測數學試卷3(文科)(解析版) 題型:選擇題

已知a,b,c為互不相等的三個正數,函數f(x)可能滿足如下性質:
①f(x-a)為奇函數;②f(x+a)為奇函數;③f(x-b)為偶函數;④f(x+b)為偶函數.
類比函數y=sinx的對稱中心、對稱軸與周期的關系,某同學得出了如下結論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結論的個數是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習冊答案