18.已知x,y滿足不等式組$\left\{\begin{array}{l}{x+2y≤8}\\{2x+y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$則求目標(biāo)函數(shù)z=6x+2y-1的最小值.

分析 作出可行域,變形目標(biāo)函數(shù),平移直線y=-3x可得結(jié)論.

解答 解:作出不等式組$\left\{\begin{array}{l}{x+2y≤8}\\{2x+y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$所對應(yīng)的可行域(如圖陰影),
變形目標(biāo)函數(shù)可得y=-3x+$\frac{z+1}{2}$,
平移直線y=-3x可得當(dāng)直線經(jīng)過點O(0,0)時截距取最小值,
故目標(biāo)函數(shù)z=6x+2y-1的最小值為-1.

點評 本題考查簡單線性規(guī)劃,準(zhǔn)確作圖是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在直角坐標(biāo)系中,已知A(-1,3),$\overrightarrow{AB}$=(6.-2),則點B的坐標(biāo)為(5,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點為F,右頂點為A,上頂點為B,O為坐標(biāo)原點,若BF⊥BA,則cos2∠BFO=2-$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.用適當(dāng)?shù)募戏柼羁眨?br />(1)(1,2)∈{(x,y)|y=x+1};
(2)2$+\sqrt{5}$∉{x|x≤2$+\sqrt{3}$};
(3){-1,1}?{x|x3-x=0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)A={1,2,4,5,9},B={4,6,7,8,10},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=a-sinx x∈(0,$\frac{5π}{2}$)的圖象與過點(0,1)且平行于x軸的直線有兩個交點,則實數(shù)a的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.矩形的長為12.寬為8,與它周長相等的正方形的面積是( 。
A.96B.48C.40D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知集合P={x|x2+x-6=0},S={x|ax+1=0},且S⊆P,求由實數(shù)a的所有可取值組成的集合;
(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B⊆A,求由實數(shù)m的所有可取值組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.計算:($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+lg$\frac{3}{7}$+lg70+$\sqrt{(lg3)^{2}-lg9+1}$=$\frac{43}{8}$.

查看答案和解析>>

同步練習(xí)冊答案