若橢圓中心在原點(diǎn),對稱軸為坐標(biāo)軸,長軸長為2,離心率為,則該橢圓的標(biāo)準(zhǔn)方程為

[  ]
A.

=1

B.

=1或=1

C.

=1

D.

=1或=1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C方程為x2+y2-8mx-(6m+2)y+6m+1=0(m∈R,m≠0),橢圓中心在原點(diǎn),焦點(diǎn)在x軸上.
(1)證明圓C恒過一定點(diǎn)M,并求此定點(diǎn)M的坐標(biāo);
(2)判斷直線4x+3y-3=0與圓C的位置關(guān)系,并證明你的結(jié)論;
(3)當(dāng)m=2時,圓C與橢圓的左準(zhǔn)線相切,且橢圓過(1)中的點(diǎn)M,求此時橢圓方程;在x軸上是否存在兩定點(diǎn)A,B,使得對橢圓上任意一點(diǎn)Q(異于長軸端點(diǎn)),直線QA,QB的斜率之積為定值?若存在,求出A,B坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1、F2分別為左、右焦點(diǎn),橢圓的一個頂點(diǎn)與兩焦點(diǎn)構(gòu)成等邊三角形,且|
F1F2
|=2.
(1)求橢圓方程;
(2)對于x軸上的某一點(diǎn)T,過T作不與坐標(biāo)軸平行的直線L交橢圓于P、Q兩點(diǎn),若存在x軸上的點(diǎn)S,使得對符合條件的L恒有∠PST=∠QST成立,我們稱S為T的一個配對點(diǎn),當(dāng)T為左焦點(diǎn)時,求T 的配對點(diǎn)的坐標(biāo);
(3)在(2)條件下討論當(dāng)T在何處時,存在有配對點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鎮(zhèn)江市揚(yáng)中二中高三(上)1月綜合練習(xí)數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C方程為x2+y2-8mx-(6m+2)y+6m+1=0(m∈R,m≠0),橢圓中心在原點(diǎn),焦點(diǎn)在x軸上.
(1)證明圓C恒過一定點(diǎn)M,并求此定點(diǎn)M的坐標(biāo);
(2)判斷直線4x+3y-3=0與圓C的位置關(guān)系,并證明你的結(jié)論;
(3)當(dāng)m=2時,圓C與橢圓的左準(zhǔn)線相切,且橢圓過(1)中的點(diǎn)M,求此時橢圓方程;在x軸上是否存在兩定點(diǎn)A,B,使得對橢圓上任意一點(diǎn)Q(異于長軸端點(diǎn)),直線QA,QB的斜率之積為定值?若存在,求出A,B坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(3)(解析版) 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1、F2分別為左、右焦點(diǎn),橢圓的一個頂點(diǎn)與兩焦點(diǎn)構(gòu)成等邊三角形,且||=2.
(1)求橢圓方程;
(2)對于x軸上的某一點(diǎn)T,過T作不與坐標(biāo)軸平行的直線L交橢圓于P、Q兩點(diǎn),若存在x軸上的點(diǎn)S,使得對符合條件的L恒有∠PST=∠QST成立,我們稱S為T的一個配對點(diǎn),當(dāng)T為左焦點(diǎn)時,求T 的配對點(diǎn)的坐標(biāo);
(3)在(2)條件下討論當(dāng)T在何處時,存在有配對點(diǎn)?

查看答案和解析>>

同步練習(xí)冊答案