點(diǎn)Q在拋物線y2=4x上,點(diǎn)P(a,0)(滿足|PQ|≥|a|恒成立,則a的取值范圍是( 。
A.(0,2)B.[0,2]C.(-∞,2]D.(-∞,0)
設(shè)Q(
t2
4
,t),
由|PQ|≥|a|得(
t2
4
-a)2+t2≥a2,
所以t2(t2+16-8a)≥0,
即t2+16-8a≥0,
故t2≥8a-16恒成立,
所以8a-16≤0,
所以a≤2,
故a的取值范圍是 (-∞,2].
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的兩個(gè)端點(diǎn)的連線構(gòu)成一正方形.(12分)
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點(diǎn),若線段的垂直平分線經(jīng)過點(diǎn),求
為原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,曲線由上半橢圓和部分拋物線連接而成,的公共點(diǎn)為,其中的離心率為.

(1)求的值;
(2)過點(diǎn)的直線分別交于(均異于點(diǎn)),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線y2=-8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足,如果直線AF的斜率為
3
,那么|PF|=( 。
A.4
3
B.8
3
C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定長(zhǎng)為6的線段AB的端點(diǎn)A、B在拋物線y2=-4x上移動(dòng),則AB的中點(diǎn)到y(tǒng)軸的距離的最小值為( 。
A.6B.5C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一輛卡車高3m,寬1.6m,欲通過橫斷面為拋物線形的隧道,已知拱口AB的寬恰好為拱高CD的4倍,|AB|=am,,求能使卡車通過的a的最小整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓(x-3)2+y2=16與拋物線y2=2px(p>0)的準(zhǔn)線相切,則p值為( 。
A.1B.2C.
1
2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A(x1,y1).B(x2,y2)兩點(diǎn)在拋物線y=2x2上,l是AB的垂直平分線.
1)當(dāng)且僅當(dāng)x1+x2取何值時(shí),直線l經(jīng)過拋物線的焦點(diǎn)F?證明你的結(jié)論;
2)當(dāng)直線l的斜率為2時(shí),求l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一個(gè)底面半徑為的圓柱被與其底面所成角為的平面所截,截面是一個(gè)橢圓,當(dāng)時(shí),這個(gè)橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案