【題目】設(shè)過拋物線的焦點的直線交拋物線于點,若以為直徑的圓過點,且與軸交于, 兩點,則( )

A. 3 B. 2 C. -3 D. -2

【答案】C

【解析】拋物線焦點坐標(biāo)為F(1,0),準(zhǔn)線方程為x=﹣1

設(shè)直線MN的方程為x=ty+1,A、B的坐標(biāo)分別為(,y1),(,y2

聯(lián)立直線和拋物線得到方程:y2﹣4my﹣4=0,

∴y1+y2=4m,y1y2=﹣4,

x1+x2=ty1+1+ty2+1=ty1+y2+2=4t2+2, =2t2+1, =2t,

則圓心D(2t2+1,2t),

由拋物線的性質(zhì)可知:丨AB=x1+x2+p=4(t2+1),

P到圓心的距離d=,由題意可知:d=AB丨,

解得:t=1,則圓心為(3,2),半徑為4,∴圓的方程方程為(x﹣3)2+(y﹣2)2=42

則當(dāng)y=0,求得與x軸的交點坐標(biāo),假設(shè)mn,則m=32,n=3+2,

mn=32)(3+2=3,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P﹣ABC中,底面△ABC滿足BA=BC, ,P在面ABC的射影為AC的中點,且該三棱錐的體積為 ,當(dāng)其外接球的表面積最小時,P到面ABC的距離為(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月14日,“共享單車”終于來到蕪湖,共享單車又被親切稱作“小黃車”是全球第一個無樁共享單車平臺,開創(chuàng)了首個“單車共享”模式.相關(guān)部門準(zhǔn)備對該項目進(jìn)行考核,考核的硬性指標(biāo)是:市民對該項目的滿意指數(shù)不低于,否則該項目需進(jìn)行整改,該部門為了了解市民對該項目的滿意程度,隨機(jī)訪問了使用共享單車的名市民,并根據(jù)這名市民對該項目滿意程度的評分(滿分分),繪制了如下頻率分布直方圖:

(I)為了了解部分市民對“共享單車”評分較低的原因,該部門從評分低于分的市民中隨機(jī)抽取人進(jìn)行座談,求這人評分恰好都在的概率;

(II)根據(jù)你所學(xué)的統(tǒng)計知識,判斷該項目能否通過考核,并說明理由.

(注:滿意指數(shù)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計,結(jié)果如下表:(記纖維長度不低于300mm的為“長纖維”,其余為“短纖維”)

纖維長度

(0,100)

[100,200)

[200,300)

[300,400)

[400,500]

甲地(根數(shù))

3

4

4

5

4

乙地(根數(shù))

1

1

2

10

6


(1)由以上統(tǒng)計數(shù)據(jù),填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.

甲地

乙地

總計

長纖維

短纖維

總計

附:(1) ;(2)臨界值表;

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828


(2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市醫(yī)療保險實行定點醫(yī)療制度,按照“就近就醫(yī)、方便管理” 的原則,規(guī)定參加保險人員可自主選擇四家醫(yī)療保險定點醫(yī)院和一家社區(qū)醫(yī)院作為就診的醫(yī)療機(jī)構(gòu).若甲、乙、丙、丁4名參加保險人員所在地區(qū)附近有三家社區(qū)醫(yī)院,并且他們的選擇是等可能的、相互獨(dú)立的.

(1)求甲、乙兩人都選擇社區(qū)醫(yī)院的概率;

(2)求甲、乙兩人不選擇同一家社區(qū)醫(yī)院的概率;

(3)設(shè)在4名參加保險人員中選擇社區(qū)醫(yī)院的人數(shù)為,求的分布列和數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+(y-1)2=5,直線lmxy+1-m=0(mR).

(1)判斷直線l與圓C的位置關(guān)系;

(2)設(shè)直線l與圓C交于A,B兩點,若直線l的傾斜角為120°,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過動點P作圓:(x﹣3)2+(y﹣4)2=1的切線PQ,其中Q為切點,若|PQ|=|PO|(O為坐標(biāo)原點),則|PQ|的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,側(cè)面PAD是邊長為2的正三角形,AB=BD= ,PB=
(Ⅰ)求證:平面PAD⊥平面ABCD;
(Ⅱ)設(shè)Q是棱PC上的點,當(dāng)PA∥平面BDQ時,求二面角A﹣BD﹣Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點,如圖2.

(1)求證:平面;

(2)求證:平面

(3)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案