【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車(chē)忽如一夜春風(fēng)來(lái),遍布了各級(jí)城市的大街小巷,為了解我市的市民對(duì)共享單車(chē)的滿意度,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了50人進(jìn)行分析.若得分低于60分,說(shuō)明不滿意,若得分不低于60分,說(shuō)明滿意,調(diào)查滿意度得分情況結(jié)果用莖葉圖表示如圖1

(Ⅰ)根據(jù)莖葉圖找出40歲以上網(wǎng)友中滿意度得分的眾數(shù)和中位數(shù);

(Ⅱ)根據(jù)莖葉圖完成下面列聯(lián)表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為滿意度與年齡有關(guān);

滿意

不滿意

合計(jì)

40歲以下

40歲以上

合計(jì)

(Ⅲ)先采用分層抽樣的方法從40歲及以下的網(wǎng)友中選取7人,再?gòu)倪@7人中隨機(jī)選出2人,將頻率視為概率,求選出的2人中至少有1人是不滿意的概率.

參考格式:,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】)眾數(shù)為75,中位數(shù)為57.5;()見(jiàn)解析,沒(méi)有的把握認(rèn)為滿意度與年齡有關(guān);(.

【解析】

)由莖葉圖直接得出眾數(shù),由于40歲以上網(wǎng)友中滿意度得分人數(shù)為偶數(shù),計(jì)算中位數(shù)時(shí)取平均數(shù)。

)根據(jù)題設(shè)信息先完成列聯(lián)表,再計(jì)算,查表確定是否有的把握認(rèn)為滿意度與年齡有關(guān).

)根據(jù)分層抽樣要求,確定出抽取7人的滿意情況,列出所有隨機(jī)選出2人的基本事件,根據(jù)古典概型概率公式求出選出的2人中至少有1人是不滿意的概率.

解:()由題意可得,40歲以上網(wǎng)友中滿意度得分的眾數(shù)為75,中位數(shù)為

)由莖葉圖可得列聯(lián)表如下:

滿意

不滿意

合計(jì)

40歲以下

20

8

28

40歲以上

10

12

22

合計(jì)

30

20

50

可知

所以沒(méi)有的把握認(rèn)為滿意度與年齡有關(guān).

)從所選取的40歲以下的網(wǎng)友中,采用分層抽樣的方法選取7人,其中滿意度為滿意的有5人,分別為,,,,,不滿意的有2人,

分別為, 所有組合的情況為,,

,,,

,,,,

,,,,

,,,共有21種.

其中選出的2人中至少有1人是不滿意的有11種,

故所求的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是圓上任意一點(diǎn),過(guò)點(diǎn)軸于點(diǎn),延長(zhǎng)到點(diǎn),使.

1)求點(diǎn)M的軌跡E的方程;

2)過(guò)點(diǎn)作圓O的切線l,交(1)中曲線E兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則下列判斷正確的是(

A.函數(shù)的最小正周期為,在上單調(diào)遞增

B.函數(shù)的最小正周期為,在上單調(diào)遞增

C.函數(shù)的最小正周期為,在上單調(diào)遞增

D.函數(shù)的最小正周期為,在上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱中,平面ABCD,四邊形ABCD為平行四邊形,.

1)若,求證://平面

2)若,且三棱錐的體積為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù)).

1)求曲線的直角坐標(biāo)方程;

2)若曲線有且僅有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)為,,離心率為,過(guò)點(diǎn)且垂直于軸的直線被橢圓截得的弦長(zhǎng)為1.

1)求橢圓的方程;

2)若直線交橢圓于點(diǎn)兩點(diǎn),與線段和橢圓短軸分別交于兩個(gè)不同點(diǎn),,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.

(1)寫(xiě)出C的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3ρ(cosθ+sinθ) =0,Ml3C的交點(diǎn),求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盲盒里面通常裝的是動(dòng)漫、影視作品的周邊,或者設(shè)計(jì)師單獨(dú)設(shè)計(jì)出來(lái)的玩偶.由于盒子上沒(méi)有標(biāo)注,購(gòu)買(mǎi)者只有打開(kāi)才會(huì)知道自己買(mǎi)到了什么,因此這種驚喜吸引了眾多年輕人,形成了盲盒經(jīng)濟(jì)”.某款盲盒內(nèi)可能裝有某一套玩偶的、、三種樣式,且每個(gè)盲盒只裝一個(gè).

1)若每個(gè)盲盒裝有、、三種樣式玩偶的概率相同.某同學(xué)已經(jīng)有了樣式的玩偶,若他再購(gòu)買(mǎi)兩個(gè)這款盲盒,恰好能收集齊這三種樣式的概率是多少?

2)某銷售網(wǎng)點(diǎn)為調(diào)查該款盲盒的受歡迎程度,隨機(jī)發(fā)放了200份問(wèn)卷,并全部收回.經(jīng)統(tǒng)計(jì),有的人購(gòu)買(mǎi)了該款盲盒,在這些購(gòu)買(mǎi)者當(dāng)中,女生占;而在未購(gòu)買(mǎi)者當(dāng)中,男生女生各占.請(qǐng)根據(jù)以上信息填寫(xiě)下表,并分析是否有的把握認(rèn)為購(gòu)買(mǎi)該款盲盒與性別有關(guān)?

女生

男生

總計(jì)

購(gòu)買(mǎi)

未購(gòu)買(mǎi)

總計(jì)

參考公式:,其中.

span>參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

3)該銷售網(wǎng)點(diǎn)已經(jīng)售賣(mài)該款盲盒6周,并記錄了銷售情況,如下表:

周數(shù)

1

2

3

4

5

6

盒數(shù)

16

______

23

25

26

30

由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點(diǎn)負(fù)責(zé)人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進(jìn)行檢驗(yàn).

①請(qǐng)用4、56周的數(shù)據(jù)求出關(guān)于的線性回歸方程;

(注:,

②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2盒,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)①中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載:“芻(chú)甍(méng)者,下有袤有廣,而上有袤無(wú)廣.芻,草也.甍,屋蓋也.”翻譯為“底面有長(zhǎng)有寬為矩形,頂部只有長(zhǎng)沒(méi)有寬為一條棱.芻甍字面意思為茅草屋頂.”若芻甍的三視圖如圖所示,主視圖是上底為2,下底為4,高為1的等腰梯形,左視圖是底邊為2的等腰三角形,則該幾何體的體積為( .

A.B.C.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案