分析 以D為原點(diǎn),建立空間直角坐標(biāo)系OO-xyz,利用向量法能求出$\frac{A{A}_{1}}{AB}$的值.
解答 解:以D為原點(diǎn),建立空間直角坐標(biāo)系O-xyz,
設(shè)AB=a,AA1=c,
則A(a,0,0),E(a,0,$\frac{c}{2}$),D(0,0,0),
B(a,a,0),D(0,0,c),O($\frac{a}{2},\frac{a}{2},\frac{c}{2}$),
$\overrightarrow{DE}$=(a,0,$\frac{c}{2}$),$\overrightarrow{DB}$=(a,a,0),
$\overrightarrow{OA}$=($\frac{a}{2},-\frac{a}{2},-\frac{c}{2}$),
∵OA⊥平面BDE,
∴$\left\{\begin{array}{l}{\overrightarrow{OA}•\overrightarrow{DE}=\frac{{a}^{2}}{2}-\frac{{c}^{2}}{4}=0}\\{\overrightarrow{OA}•\overrightarrow{DB}=\frac{{a}^{2}}{2}-\frac{{a}^{2}}{2}=0}\end{array}\right.$,解得c=$\sqrt{2}a$,
∴$\frac{A{A}_{1}}{AB}$=$\frac{c}{a}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點(diǎn)評(píng) 本題考查線段比值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直線 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)≥f(b)且當(dāng)x>0時(shí)f(b-x)≥f(b+x) | B. | f(x)≥f(b)且當(dāng)x>0時(shí)f(b-x)≤f(b+x) | ||
C. | f(x)≥f(a)且當(dāng)x>0時(shí)f(a-x)≥f(a+x) | D. | f(x)≥f(a)且當(dāng)x>0時(shí)f(a-x)≤f(a+x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com