【題目】據(jù)四川省民政廳報(bào)告,2013年6月29日以來,四川省中東部出現(xiàn)強(qiáng)降雨天氣過程,局地出現(xiàn)大暴雨.暴雨洪澇災(zāi)害已造成遂寧、德陽(yáng)、綿陽(yáng)等12市34縣(市、區(qū))244萬人受災(zāi),共造成直接經(jīng)濟(jì)損失85502.41萬元.適逢暑假,小王在某小區(qū)調(diào)查了50戶居民由于洪災(zāi)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖).


(1)若先從損失超過6000元的居民中隨機(jī)抽出2戶進(jìn)行調(diào)查,求這2戶不在同一小組的概率;(2)洪災(zāi)過后小區(qū)居委會(huì)號(hào)召小區(qū)居民為洪災(zāi)重災(zāi)區(qū)捐款,小王調(diào)查的50戶居民的捐款情況如表,在表格空白處填寫正確的數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

P(K2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:臨界值表參考公式:K2=

【答案】(1)(2)有95%以上的把握

【解析】試題分析(1)由頻率直方圖得到,損失不少于元的以及損失為元的居民數(shù),再由古典概型結(jié)合排列組合便可得出兩戶在同一分組的概率;(2)由頻率直方圖計(jì)算數(shù)據(jù)補(bǔ)全表格后,代入臨界值公式算出,與表格數(shù)據(jù)相對(duì)比,便可得到結(jié)論.

試題解析:(1)由頻率分布直方圖可得,

損失不少于6000元的居民共有(0.00003+0.00003)×2000×50=6戶,

損失為6000~8000元的居民共有0.00003×2000×50=3戶,

損失不少于8000元的居民共有0.00003×2000×50=3戶,

因此,這兩戶在同一分組的概率為P=,

(2)如表:

經(jīng)濟(jì)損失不超過

4000元

經(jīng)濟(jì)損失超過

4000元

合計(jì)

捐款超過

500元

30

9

39

捐款不超

過500元

5

6

11

合計(jì)

35

15

50

K2=≈4.046>3.841

所以有95%以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否項(xiàng)500元有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D的中點(diǎn),AC平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長(zhǎng);

(2)求B1D與平面ABB1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,六棱錐PABCDEF的底面是正六邊形,PA⊥平面ABCDEF.則下列結(jié)論不正確的是(  )

A. CD∥平面PAF

B. DF⊥平面PAF

C. CF∥平面PAB

D. CF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的數(shù)據(jù)如下表:

x

x1

x2

x3

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

-2

0

(1)求x1,x2,x3的值及函數(shù)f(x)的表達(dá)式;

(2)將函數(shù)f(x)的圖象向左平移π個(gè)單位,可得到函數(shù)g(x)的圖象,求函數(shù)y=f(x)·g(x)在區(qū)間的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi) (單位:千元)對(duì)年銷售量 (單位:t)和年利潤(rùn) (單位:千元)的影響.對(duì)近8年的年宣傳費(fèi)和年銷售量 (i12,,8)數(shù)據(jù)作了初步處理,得到右面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中,

(1)根據(jù)散點(diǎn)圖判斷, 哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)已知這種產(chǎn)品的年利潤(rùn)的關(guān)系為.根據(jù)(2)的結(jié)果回答下列問題:

①年宣傳費(fèi)=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?

②年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù), ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱ABCA1B1C1中,側(cè)面AA1C1C是菱形,AC1A1C交于點(diǎn)O,點(diǎn)EAB的中點(diǎn).

(1)求證:OE∥平面BCC1B1.

(2)AC1A1B,求證:AC1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).

(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;

(Ⅱ)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線處的切線方程為,求的單調(diào)區(qū)間;

2)若時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1中,P,M,N分別為棱DD1,AB,BC的中點(diǎn).

(1)求二面角B1-MN-B的正切值.

(2)求證:PB⊥平面MNB1.

查看答案和解析>>

同步練習(xí)冊(cè)答案