【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓:(),,,,是橢圓上的四個(gè)動(dòng)點(diǎn),且,,線(xiàn)段與交于橢圓內(nèi)一點(diǎn).當(dāng)點(diǎn)的坐標(biāo)為,且,分別為橢圓的上頂點(diǎn)和右頂點(diǎn)重合時(shí),四邊形的面積為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)證明:當(dāng)點(diǎn),,,在橢圓上運(yùn)動(dòng)時(shí),()是定值.
【答案】(Ⅰ);(Ⅱ)是定值
【解析】
【試題分析】(1)依據(jù)題設(shè)條件建立方程組,然后解方程組求出,;(2)先設(shè)四點(diǎn)坐標(biāo)分別為,,,,然后將點(diǎn),的坐標(biāo)代入橢圓方程得:,.再兩式相減得:,求得,進(jìn)而得到,①
將點(diǎn),的坐標(biāo)代入橢圓方程,同理可得:,最后設(shè)(),得,即,即,,②。再設(shè),同理可得:,,③。由①②③得: ,
整理得: ,進(jìn)而得到,從而求出。
解:(Ⅰ)由題可知:,解得,,
所以橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè),,,,
將點(diǎn),的坐標(biāo)代入橢圓方程得:,.
兩式相減得:,
∵,∴,①
將點(diǎn),的坐標(biāo)代入橢圓方程,同理可得:,
設(shè)(),得,
即,即,,②
設(shè),同理可得:,,③
由①②③得: ,
整理得: ,
即,
∵,,∴,
所以是定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】立德中學(xué)和樹(shù)人中學(xué)各派一名學(xué)生組成一個(gè)聯(lián)隊(duì)參加一項(xiàng)智力競(jìng)賽,這個(gè)智力競(jìng)賽一共兩輪,在每一輪中,兩名同學(xué)各回答一次題目,已知,立德中學(xué)派出的學(xué)生每輪中答對(duì)問(wèn)題的概率都是,樹(shù)人中學(xué)派出的學(xué)生每輪中答對(duì)問(wèn)題的概率都是;每輪中,兩位同學(xué)答對(duì)與否互不影響,各論結(jié)果亦互不影響,求:
(Ⅰ)兩輪比賽后,立德中學(xué)的學(xué)生恰比樹(shù)人中學(xué)的學(xué)生答對(duì)題目的個(gè)數(shù)多個(gè)的概率;
(Ⅱ)兩輪比賽后,記為這兩名同學(xué)一共答對(duì)的題目數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形所在的平面,為的中點(diǎn),,四邊形為矩形,線(xiàn)段交于點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線(xiàn)段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為單位正方體,黑白兩只螞蟻從點(diǎn)出發(fā)沿棱向前爬行,每走完一條棱稱(chēng)為“走完一段”,白螞蟻爬行的路線(xiàn)是,黑螞蟻爬行的路線(xiàn)是,它們都遵循如下規(guī)則:所爬行的第段與第段所在直線(xiàn)必須是異面直線(xiàn)(其中是自然數(shù)),設(shè)黑、白螞蟻都走完2012段后各停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩只螞蟻的距離是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A(2,4)
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線(xiàn)x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線(xiàn)l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線(xiàn)l的方程;
(3)設(shè)點(diǎn)T(t,o)滿(mǎn)足:存在圓M上的兩點(diǎn)P和Q,使得,求實(shí)數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的單調(diào)性;
(2)當(dāng)在上的最小值是時(shí),求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的右焦點(diǎn)為,點(diǎn)分別是橢圓的上、下頂點(diǎn),點(diǎn)是直線(xiàn)上的一個(gè)動(dòng)點(diǎn)(與軸的交點(diǎn)除外),直線(xiàn)交橢圓于另一個(gè)點(diǎn).
(1)當(dāng)直線(xiàn)經(jīng)過(guò)橢圓的右焦點(diǎn)時(shí),求的面積;
(2)①記直線(xiàn)的斜率分別為,求證:為定值;
②求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語(yǔ)文閱讀理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗(yàn)證這個(gè)結(jié)論,從該校選擇甲乙兩個(gè)同類(lèi)班級(jí)進(jìn)行試驗(yàn),其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無(wú)額外訓(xùn)練,一段時(shí)間后進(jìn)行數(shù)學(xué)應(yīng)用題測(cè)試,統(tǒng)計(jì)數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | |||
總計(jì) |
(1)能否據(jù)此判斷有把握認(rèn)為加強(qiáng)語(yǔ)文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?
(2)經(jīng)過(guò)多次測(cè)試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在分鐘,小剛正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在分鐘,現(xiàn)小明、小剛同時(shí)獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明先正確解答完的概率;
(3)現(xiàn)從乙班成績(jī)優(yōu)秀的名同學(xué)中任意抽取兩人,并對(duì)他們的答題情況進(jìn)行全程研究,記兩人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知偶函數(shù),當(dāng)時(shí),,當(dāng)時(shí),.關(guān)于偶函數(shù)的圖象和直線(xiàn)的個(gè)命題如下:
①當(dāng)時(shí),存在直線(xiàn)與圖象恰有個(gè)公共點(diǎn);
②若對(duì)于,直線(xiàn)與圖象的公共點(diǎn)不超過(guò)個(gè),則;
③,,使得直線(xiàn)與圖象交于個(gè)點(diǎn),且相鄰點(diǎn)之間的距離相等.
其中正確命題的序號(hào)是( ).
A. ①②B. ①③C. ②③D. ①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com