本題滿(mǎn)分14分)已知橢圓C的中心在原點(diǎn),焦點(diǎn)x軸上,點(diǎn)P為橢圓上的一個(gè)動(dòng)點(diǎn),且的最大值為90°,直線l過(guò)左焦點(diǎn)與橢圓交于A、B兩點(diǎn),

的面積最大值為12.

(1)求橢圓C的離心率;(5分)

(2)求橢圓C的方程。(9分)

 

【答案】

 

(1) ,

(2)

【解析】解:(1)根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)的軌跡為橢圓,設(shè)橢圓方程:   其焦距為, 則 ,,則

所以動(dòng)點(diǎn)M的軌跡方程為:.                  ………………………5分

(2)當(dāng)直線的斜率不存在時(shí),不滿(mǎn)足題意.

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,設(shè),

,∴.                  ………………………6分

    ∵,,  ∴

   ∴ .(1)              ………………………8分

由方程組  得.  

 得

 則,,              ………………………11分

代入①,得

,解得,. 經(jīng)驗(yàn)證。    ………………………13分

 所以,直線的方程是.       ………………………14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

090423

 
(本題滿(mǎn)分14分)已知定點(diǎn)C(-1,0)及橢圓x2+3y2=5,過(guò)點(diǎn)C的動(dòng)直線與橢圓相交于A,B兩點(diǎn).(1)若線段AB中點(diǎn)的橫坐標(biāo)是-,求直線AB的方程;(2)在x軸上是否存在點(diǎn)M,使為常數(shù)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省高一第一次階段練習(xí)數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)已知全集,集合,,求:

(1);

(2).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)已知四邊形滿(mǎn)足,的中點(diǎn),將沿著翻折成,使面,的中點(diǎn).

(Ⅰ)求四棱錐的體積;(Ⅱ)證明:∥面;

(Ⅲ)求面與面所成二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省分校高三10月學(xué)習(xí)質(zhì)量診斷文科數(shù)學(xué)試卷(解析版) 題型:解答題

 (本題滿(mǎn)分14分)已知,且.

(1)求實(shí)數(shù)的值;

(2)求函數(shù)的單調(diào)遞增區(qū)間及最大值,并指出取得最大值時(shí)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)文卷 題型:解答題

(本題滿(mǎn)分14分)

已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程;

(2)若過(guò)點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案