如圖所示,四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面垂直,底面ABCD是菱形,∠BAD=60°,E為PC的中點(diǎn).
(1)求證:PA∥平面BDE;
(2)求證:PB⊥AD.
考點(diǎn):直線與平面平行的判定,空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:(1)連結(jié)AC,BD,交于O,連結(jié)OE,由已知條件推導(dǎo)出OE∥PA,由此能證明PA∥平面BDE.
(2)連接DN,由PA=AB=BD=PD,N為PB中點(diǎn),得AN⊥PB,DN⊥PB,從而PB⊥平面ADN,由此能證明PB⊥AD.
解答: 證明:(1)連結(jié)AC,BD,交于O,連結(jié)OE,
∵底面ABCD是菱形,∴O是AC的中點(diǎn),
∵E為PC的中點(diǎn),∴OE∥PA,
∵OE?平面BDE,PA不包含于平面BDE,
∴PA∥平面BDE.
(2)連接DN,
∵PA=AB=BD=PD,N為PB中點(diǎn),
∴AN⊥PB,DN⊥PB,
又∵AN∩BN=N,
∴PB⊥平面ADN,
∵AD?平面ADN,∴PB⊥AD.
點(diǎn)評:本題考查直線與平面平行的證明,考查異面直線垂直的證明,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在[-3,3]中取一實(shí)數(shù)賦值給a,使得關(guān)于x的方程4x2-4ax+2-a=0有兩個實(shí)根的概率為( 。
A、
1
6
B、
1
4
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x||x-3|≤5},B={x|x2-4x-5>0},C={x|a≤x≤a+3}
(1)求A∩B
(2)若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},前n項(xiàng)和為Sn=n2+Bn,a7=14.
(1)求B、an;
(2)設(shè)cn=n•2an,求Tn=c1+c2+…+cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上任意一點(diǎn),過原點(diǎn)的直線l與橢圓交于A、B兩點(diǎn),若kAP與kBP均存在,試問:kAP與kBP的乘積是否為定值?若是,求出這個值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且an和Sn滿足Sn=
1
2
(an2+an),n∈N*
(1)求{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=(
1
2
nan,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(-1)nλ<Tn+
n
2n
對一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
2
2x+1
,x∈R
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;
(2)探索函數(shù)f(x)的單調(diào)性;
(3)若f(logb(2t-t2))>f(logb(2-t))(b>0且b≠1),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(diǎn)(1,f(1))處的切線為6x+y+4=0.
(1)求a,b,c的值;
(2)求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax+b(a,b∈R)在x=2處取得的極小值是-
4
3

(Ⅰ)求a,b的值;
(Ⅱ)當(dāng)x∈[-4,3]時,求函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案