17.已知集合A={-4,a,a2},B={a+4,-a,4},求適合下列條件的a值:
(1)4∈A∩B;
(2){4}=A∩B.

分析 (1)由4∈A∩B便可得到4∈A,從而有a=4,或a2=4,經(jīng)驗(yàn)證是否滿足集合元素的互異性便可得出a=2,或4;
(2)根據(jù){4}=A∩B便有,4∈A∩B,從而有上面得到a=2或4,再驗(yàn)證是否滿足{4}=A∩B便可求出a的值.

解答 解:(1)4∈A∩B;
∴4∈A;
∴a=4,或a2=4;
∴a=4,或a=±2;
經(jīng)驗(yàn)證,a=-2時(shí),B={2,2,4},不滿足集合元素的互異性;
∴a=2,或4;
(2){4}=A∩B;
∴4∈A∩B;
由(1)得,a=2,或4;
①a=2時(shí),A={-4,2,4},B={6,-2,4},滿足{4}=A∩B;
②a=4時(shí),A={-4,4,16},B={8,-4,4};
∴A∩B={-4,4};
∴這種情況不存在;
∴a=2.

點(diǎn)評(píng) 考查交集的概念及運(yùn)算,元素與集合的關(guān)系,列舉法表示結(jié)合,以及集合元素的互異性,在求出a后要想著驗(yàn)證是否滿足條件及集合元素的互異性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=($\frac{1}{3}$)${\;}^{\sqrt{-{x}^{2}+2x+3}}$的單調(diào)遞減區(qū)間是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若定點(diǎn)A(a,2)在圓x2+y2-2ax-3y+a2+a=0的外部,則a的取值范圍是$(2,\frac{9}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)f″(x)>0,則( 。
A.f(1)-f(0)>f′(1)>f′(0)B.f′(1)>f(0)-f(1)>f′(0)C.f′(1)>f(1)-f(0)>f′(0)D.f′(1)>f′(0)>f(1)-f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.空間四點(diǎn)A,B,C,D滿足|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=3,|$\overrightarrow{CD}$|=3$\sqrt{6}$,|$\overrightarrow{DA}$|=7,則$\overrightarrow{AC}$•$\overrightarrow{BD}$的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)x,y,z為整數(shù)且x+y+z=3,x3+y3+z3=3,則x2+y2+z2=3或57.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果函數(shù)f(x)=3sin(2x-φ)(0<φ<π)的圖象滿足f(x+$\frac{π}{6}$)=f($\frac{π}{6}$-x),則f(x)$≥\frac{3}{2}$的解集為{x|kπ+$\frac{π}{2}$≤x≤kπ+$\frac{5π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.比值$\frac{l}{r}$(l是圓心角α所對(duì)的弧長(zhǎng),r是該圓的半徑)( 。
A.既與α的大小有關(guān),又與r的大小有關(guān)
B.與α及r的大小都無關(guān)
C.與α的大小有關(guān),而與r的大小無關(guān)
D.與α的大小無關(guān),而與r的大小有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R且滿足a>b>c,f(1)=0.
(Ⅰ)證明:函數(shù)f(x)與g(x)的圖象交于不同的兩點(diǎn);
(Ⅱ)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值為9,最大值為21,試求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案