【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時(shí),f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.

【答案】
(1)

解:f(x)=(log2x)2﹣2alog2x+b= +b﹣a2(x>0),

當(dāng)x= 時(shí),f(x)有最小值﹣1,

,解得:


(2)

解:由(1)得:f(x)=(log2x)2+4log2x+3,

f(x)<0即(log2x+3)(log2x+1)<0,

解得: <x<


【解析】(1)利用配方法,結(jié)合x= 時(shí),f(x)有最小值﹣1,建立方程組,即可求a與b的值;(2)f(x)<0即(log2x)2+4log2x+3<0,即可求出x的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線x2 =1的左、右焦點(diǎn)分別為F1、F2 , 若點(diǎn)P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線PA垂直于圓O所在的平面,△ABC內(nèi)接于圓O,且AB為圓O的直徑,點(diǎn)M為線段PB的中點(diǎn).現(xiàn)有以下命題:①BC⊥PC;②OM∥平面APC;③點(diǎn)B到平面PAC的距離等于線段BC的長(zhǎng).其中真命題的個(gè)數(shù)為(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有甲,乙,丙,丁四位同學(xué)課余參加巴蜀愛心社和巴蜀文學(xué)風(fēng)的活動(dòng),每人參加且只能參加一個(gè)社團(tuán)的活動(dòng),并且參加每個(gè)社團(tuán)都是等可能的.

(1)求巴蜀愛心社和巴蜀文學(xué)風(fēng)都至少有1人參加的概率;

(2)求甲,乙在同一個(gè)社團(tuán),丙,丁不在同一個(gè)社團(tuán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面,四邊形為菱形,四邊形為矩形, , 分別是 的中點(diǎn), .

(Ⅰ)求證: 平面;

(Ⅱ)若三棱錐的體積為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)離心率為,過(guò)點(diǎn)的橢圓的兩條切線相互垂直.

(1)求此橢圓的方程;

(2)若存在過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),使得為右焦點(diǎn)),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列五個(gè)命題: ①平面內(nèi),到一定點(diǎn)的距離等于到一定直線距離的點(diǎn)的集合是拋物線;
②平面內(nèi),定點(diǎn)F1、F2 , |F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=6,則點(diǎn)M的軌跡是橢圓;
③在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件;
④“若﹣3<m<5,則方程 =1是橢圓”.
⑤已知向量 , 是空間的一個(gè)基底,則向量 + , 也是空間的一個(gè)基底.
其中真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,
(1)求f(x)的定義域;
(2)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=1﹣ (x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是(
A.
B.
C. 且m≠0
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案