設(shè)橢圓M:的離心率與雙曲線的離心率互為倒數(shù),且內(nèi)切于圓

(1)求橢圓M的方程;

(2)若直線交橢圓于A、B兩點(diǎn),是橢圓M上的一點(diǎn),求面積的最大值.

 

【答案】

(1)

 (2 ) 當(dāng)且僅當(dāng)取等號∴ .

【解析】本試題主要是考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的綜合運(yùn)用。

(1)因?yàn)殡p曲線的離心率為公式

,以及圓的直徑得打a的值,從而得到橢圓的方程。

(2)設(shè)直線AB的直線方程:.

,然后聯(lián)立方程組,結(jié)合韋達(dá)定理和點(diǎn)到直線的距離公式表示三角形的高,得到三角形的面積的求解。

(1)雙曲線的離心率為,則橢圓的離心率為 

得:  所求橢圓M的方程為

 (2 ) 直線的直線方程:.

,得,

,得

 .

 

的距離為.

 

當(dāng)且僅當(dāng)取等號∴ .

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:黑龍江省大慶實(shí)驗(yàn)中學(xué)2011屆高三上學(xué)期期末考試數(shù)學(xué)文科試題 題型:044

設(shè)橢圓M:的離心率為,點(diǎn)A、B的坐標(biāo)分別為(a,0)、(0,-b),原點(diǎn)O到直線AB的距離為

(Ⅰ)求橢圓M的方程;

(Ⅱ)設(shè)點(diǎn)C為(-a,0),點(diǎn)P在橢圓M上(與A、C均不重合),點(diǎn)E在直線PC上,若直線PA的方程為y=kx-4,且,試求直線BE的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市順義區(qū)2012屆高三尖子生上學(xué)期綜合素質(zhì)展示數(shù)學(xué)文科試題 題型:044

設(shè)橢圓M:的離心率為,點(diǎn)A(a,0),B(0,-b),原點(diǎn)O到直線AB的距離為

(Ⅰ)求橢圓M的方程;

(Ⅱ)設(shè)點(diǎn)C為(-a,0),點(diǎn)P在橢圓M上(與A、C均不重合),點(diǎn)E在直線PC上,若直線PA的方程為y=kx-4,且,試求直線BE的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州外國語學(xué)校高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)橢圓M:的離心率為,點(diǎn)A(a,0),B(0,-b),原點(diǎn)O到直線AB的距離為
(I)求橢圓M的方程;
(Ⅱ)設(shè)點(diǎn)C為(-a,0),點(diǎn)P在橢圓M上(與A、C均不重合),點(diǎn)E在直線PC上,若直線PA的方程為y=kx-4,且,試求直線BE的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年內(nèi)蒙古包頭市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)橢圓M:的離心率為,點(diǎn)A(a,0),B(0,-b),原點(diǎn)O到直線AB的距離為
(I)求橢圓M的方程;
(Ⅱ)設(shè)點(diǎn)C為(-a,0),點(diǎn)P在橢圓M上(與A、C均不重合),點(diǎn)E在直線PC上,若直線PA的方程為y=kx-4,且,試求直線BE的方程.

查看答案和解析>>

同步練習(xí)冊答案