若x2-3x+2=0是x=1的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】分析:判斷由前者能否推出后者成立,反之通過解二次方程判斷后者成立能否推出前者成立,利用充要條件的定義得到結(jié)論.
解答:解:當(dāng)x=1成立時(shí)有12-3×1+2=0即x2-3x+2=0成立
當(dāng)x2-3x+2=0成立時(shí)有x=1或x=2不一定有x=1成立
故x2-3x+2=0是x=1的必要不充分條件,
故選B.
點(diǎn)評(píng):判斷一個(gè)條件是另一個(gè)的什么條件,一般判斷前者是否能推出后者,后者是否能推出前者成立,利用充要條件的定義加以判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、下列命題錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的有( 。
(1)命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
(2)“x>2”是“x2-3x+2>0”的充分不必要條件;
(3)若p∧q為假命題,則p、q均為假命題;
(4)對(duì)于命題p:?x∈R,x2+x+1<0,則¬p:?x∈R,x2+x+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)命題:①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;②若p∨q為假命題,則p,q均為假命題;③命題p:“?x∈R,x2+x+1<0”,則命題p的否定為“?x∈R,x2+x+1≥0”;④在△ABC中,A<B是sinA<sinB的充分不必要條件;其中真命題為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案