(本小題滿分13分)

甲、乙兩人進(jìn)行五局三勝制的游戲(即先勝三局者獲勝),若甲每局勝率為乙每局勝率為,設(shè)每局比賽之間相互沒(méi)有影響。

   (1)恰好第五局甲勝的概率;                   

   (2)記ξ為本次游戲的局?jǐn)?shù),求ξ的概率分布列和數(shù)學(xué)期望。

解:(1)恰好第五局甲勝,即意味著前4局甲勝2局,輸2局,第五局甲勝,

故有    ………………3分

   (2)依題意:ξ的取值為3,4,5   ………………4分

ξ=3時(shí),即甲勝3局或乙勝3局

    ………………6分

ξ=4時(shí),即前3局中甲勝2局,第4局甲勝或前3局中乙勝2局,第4局乙勝

   ………………8分

ξ=5時(shí),即前4局甲勝2局,乙勝2局,第五局甲勝或乙勝

  …………10分

所以ξ的概率分布為

ξ

3

4

5

P

                                        ………………11分


解析:

解:(1)恰好第五局甲勝,即意味著前4局甲勝2局,輸2局,第五局甲勝,

故有    ………………3分

   (2)依題意:ξ的取值為3,4,5   ………………4分

ξ=3時(shí),即甲勝3局或乙勝3局

    ………………6分

ξ=4時(shí),即前3局中甲勝2局,第4局甲勝或前3局中乙勝2局,第4局乙勝

   ………………8分

ξ=5時(shí),即前4局甲勝2局,乙勝2局,第五局甲勝或乙勝

  …………10分

所以ξ的概率分布為

ξ

3

4

5

P

                                        ………………11分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案