設數(shù)列{an}是一個無窮數(shù)列,記,n∈N*
(1)若{an}是等差數(shù)列,證明:對于任意的n∈N*,Tn=0;
(2)對任意的n∈N*,若Tn=0,證明:{an}是等差數(shù)列.
【答案】分析:(1)利用遞推式,再寫一式,兩式相減,根據(jù){an}是等差數(shù)列,即可得到結論;
(2)寫出=0,兩式相減,即可證得結論.
解答:證明:(1)∵

兩式相減可得
∵{an}是等差數(shù)列,設其公差為d
=0,∴對于任意的n∈N*,Tn=0;
(2)∵=0
=0
兩式相減可得an+1-2an+2+an+3=0
=0
∴a1-2a2+a3=0
∴an+1-2an+an-1=0
∴{an}是等差數(shù)列.
點評:本題主要考查數(shù)列的遞推式,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱之為數(shù)列{an}的一個子數(shù)列.設數(shù)列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項、第6項作為一個等比數(shù)列的第1項、第2項,試問該數(shù)列是否為{an}的無窮等比子數(shù)列,請說明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項、第m(m≥2)項(設am=t)作為一個等比數(shù)列的第1項、第2項,試問當且僅當t為何值時,該數(shù)列為{an}的無窮等比子數(shù)列,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是一個公差不為零的等差數(shù)列,已知它的前10項和為110,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式
(2)若bn=(n+1)an求數(shù)列{
1bn
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱為數(shù)列{an}的一個子數(shù)列,設數(shù)列{an}是一個首項為a1,公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5為公比為q的等比數(shù)列,求公比q的值;
(2)若a1=1,d=2,請寫出一個數(shù)列{an}的無窮等比子數(shù)列{bn};
(3)若a1=7d,{cn}是數(shù)列{an}的一個無窮子數(shù)列,當c1=a2,c2=a6時,試判斷{cn}能否是{an}的無窮等比子數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•奉賢區(qū)二模)數(shù)列{an} 的各項均為正數(shù),a1=t,k∈N*,k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)當k=1,p=5時,若數(shù)列{an}是成等比數(shù)列,求t的值;
(2)當t=1,k=1時,設Tn=a1+
a2
p
+
a3
p2
+…+
an-1
pn-1
+
an
pn-1
,參照高二教材書上推導等比數(shù)列前n項求和公式的推導方法,求證:數(shù)列
1+p
p
Tn-
an
pn
-6n
是一個常數(shù);
(3)設數(shù)列{an}是一個等比數(shù)列,求t(用p,k的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是一個無窮數(shù)列,記Tn=
n+2i=1
2i-1ai+2a1-a3-2n+2an+1
,n∈N*
(1)若{an}是等差數(shù)列,證明:對于任意的n∈N*,Tn=0;
(2)對任意的n∈N*,若Tn=0,證明:{an}是等差數(shù)列.

查看答案和解析>>

同步練習冊答案