在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,其中右焦點(diǎn)F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(1)求橢圓C1的方程;
(2)設(shè)E(0,
1
2
)
,是否存在斜率為k (k≠0)的直線l與橢圓C1交于A、B兩點(diǎn),且|AE|=|BE|?若存在,求k的取值范圍;若不存在,請(qǐng)說明理由.
分析:(1)根據(jù)右焦點(diǎn)F2也是拋物線C2:y2=4x的焦點(diǎn),且|MF2|=
5
3
,可求出F2,根據(jù)拋物線的定義可求得點(diǎn)M的橫坐標(biāo),并代入拋物線方程,可求其縱坐標(biāo);把點(diǎn)M代入橢圓方程,以及焦點(diǎn)坐標(biāo),解方程即可求得橢圓C1的方程;
(2)設(shè)AB中點(diǎn)P(x0,y0)和直線l的方程為y=kx+m(k≠0),由|AE|=|BE|等價(jià)于PE⊥AB,聯(lián)立直線和橢圓方程,消去y,得到關(guān)于x的一元二次方程,利用韋達(dá)定理和△>0即可求得k的取值范圍.
解答:解:(1)由已知|MF2|=xm+1=
5
3

xm=
2
3
代入y2=4x 得ym=
2
6
3
,
M(
2
3
,
2
6
3
)
代入橢圓方程
4
9a2
+
24
9b2
=1

又1=a2-b2 解得a2=4,b2=3,
故橢圓C1的方程為
x2
4
+
b2
3
=1

(2)設(shè)直線l的方程為y=kx+m(k≠0),
代入
x2
4
+
y2
3
=1
得(3+4k2)x2+8kmx+4m2-12=0.
x1+x2=
-8km
3+4k2
,x1x2=
4m2-12
3+4k2

直線l與橢圓C,有兩個(gè)不同公共點(diǎn)的充要條件是△=(8km)2-4(3+4k2)(4m2-12)>0,
即4k2-m2+3>0(*)
設(shè)AB中點(diǎn)P(x0,y0),則x0=
x1+x2
2
=
-4km
3+4k2
,y0=kx0+m=
3m
3+4k2
,
|AE|=|BE|等價(jià)于PE⊥AB,
EP
AB
=0
,
EP
=(x0,y0-
1
2
)=(-
4km
3+4k2
3m
3+4k2
-
1
2
)

(1,k)為
AB
的一個(gè)方向向量,故-
4km
3+4k2
+
3mk
3+4k2
-
1
2
k=0,∴m=
-(3+4k2)
2

代入(*)得3+4k2-
(3+4k2)2
4
>0
,∵3+4k2≠0,∴4-(3+4k2)>0,故k2
1
4
-
1
2
<k<
1
2
,
因此存在合條件的直線l,其斜率k的范圍為(-
1
2
,0)∪(0,
1
2
)
點(diǎn)評(píng):此題是個(gè)難題.考查拋物線的定義和簡(jiǎn)單的幾何性質(zhì),待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程,以及直線和橢圓相交中的有關(guān)中點(diǎn)弦的問題,綜合性強(qiáng),特別是問題(2)的設(shè)問形式,增加了題目的難度,注意直線與圓錐曲線相交,△>0.體現(xiàn)了數(shù)形結(jié)合和轉(zhuǎn)化的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點(diǎn),若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2)和點(diǎn)Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動(dòng)點(diǎn)P在射線OA上運(yùn)動(dòng),動(dòng)點(diǎn)Q在y軸的正半軸上運(yùn)動(dòng),△POQ的面積為2
3

(1)求線段PQ中點(diǎn)M的軌跡C的方程;
(2)R1,R2是曲線C上的動(dòng)點(diǎn),R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個(gè)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個(gè)焦分別為F1,F(xiàn)2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l 的對(duì)稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案