[2014·南通調研]設α,β是空間內兩個不同的平面,m,n是平面α及β外的兩條不同直線.從“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中選取三個作為條件,余下一個作為結論,寫出你認為正確的一個命題:________(用序號表示).
科目:高中數學 來源: 題型:填空題
如圖,PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,E、F分別是點A在PB、PC上的射影.給出下列結論:
①AF⊥PB; ②EF⊥PB;
③AF⊥BC; ④AE⊥平面PBC.
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
如圖所示,ABCD-A1B1C1D1是長方體,AA1=a,∠BAB1=∠B1A1C1=30°,則AB與A1C1所成的角為________,AA1與B1C所成的角為________.
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
已知平面α,β和直線m,給出下列條件:①m∥α;②m⊥α;③m?α;④α⊥β;⑤α∥β.
(1)當滿足條件________時,有m∥β;
(2)當滿足條件________時,有m⊥β(填所選條件的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
是兩個不同的平面,是平面及之外的兩條不同直線,給出四個論斷:
① ② ③ 、。 以其中三個論斷作為條件,余下一個論斷作為結論,寫出你認為正確的一個命題:________________________________.
查看答案和解析>>
科目:高中數學 來源: 題型:單選題
已知直線,平面,且,給出下列命題:
①若∥,則m⊥;②若⊥,則m∥;③若m⊥,則∥;④若m∥,則⊥其中正確命題的個數是( )
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
已知四棱錐PABCD的頂點P在底面的射影恰好是底面菱形ABCD的兩條對角線的交點,若AB=3,PB=4,則PA長度的取值范圍為________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com