10.已知:函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx-cos2
(1)求函數(shù)f(x)的最小正周期及當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的值域.;
(2)若y=f(x)的圖象在[0,m]上恰好有兩個(gè)點(diǎn)的縱坐標(biāo)為1,求實(shí)數(shù)m的取值范圍.

分析 將函數(shù)解析式利用二倍角的正弦、余弦函數(shù)公式化簡(jiǎn),整理后再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),
(1)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),-$\frac{π}{6}$≤2x-$\frac{π}{6}$≤$\frac{5π}{6}$,即可求f(x)的值域.;
(2)由函數(shù)的圖象在[0,m]上恰好有兩個(gè)點(diǎn)的縱坐標(biāo)為1,令函數(shù)值為1,表示出x,根據(jù)k為整數(shù),取k=0,k=1,分別求出對(duì)應(yīng)x的值,即可確定出m的范圍.

解答 解:(1)f(x)=$\sqrt{3}$sin2x-(cos2x-sin2x)=$\sqrt{3}$sin2x-cos2x=2($\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x)=2sin(2x-$\frac{π}{6}$)
∴T=$\frac{2π}{2}$=2;
∵0≤x≤$\frac{π}{2}$,∴0≤2x≤π,
∴-$\frac{π}{6}$≤2x-$\frac{π}{6}$≤$\frac{5π}{6}$,
∴-$\frac{1}{2}$≤sin(2x-$\frac{π}{6}$)≤1,
∴-1≤2sin(2x-$\frac{π}{6}$)≤2,
∴x∈[0,$\frac{π}{2}$]時(shí),f(x)的值域?yàn)閇-1,2];
(2)2sin(2x-$\frac{π}{6}$)=1,則sin(2x-$\frac{π}{6}$)=$\frac{1}{2}$  
∴2x-$\frac{π}{6}$=2kπ+$\frac{π}{6}$或2x-$\frac{π}{6}$=2kπ+$\frac{5π}{6}$,
∴2x=2kπ+$\frac{π}{3}$或2x=2kπ+π,
∴x=kπ+$\frac{π}{6}$或x=kπ+$\frac{π}{2}$,
k=0,x=$\frac{π}{6}$或x=$\frac{π}{2}$,k=1,x=$\frac{7π}{6}$或x=$\frac{3π}{2}$,
∴m∈[$\frac{π}{2}$,$\frac{7π}{6}$).

點(diǎn)評(píng) 此題考查了二倍角的正弦、余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)一電路中電流i關(guān)于時(shí)間t的變化率為$\frac{di}{dt}$=4t-0.6t2,若t=0,i=2A,求電流i關(guān)于時(shí)間t的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.定義在R上的函數(shù)f(x),當(dāng)x∈(-1,1]時(shí),f(x)=x-x2,且對(duì)任意的x滿足f(x-2)=af(x)(常數(shù)a>0),則f(x)在(5,7]上的最大值是( 。
A.$\frac{1}{4{a}^{3}}$B.$\frac{{a}^{3}}{4}$C.-$\frac{{a}^{3}}{4}$D.-$\frac{1}{4{a}^{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.等差數(shù)列a1,a2,a3…am的前m項(xiàng)和是48,a2+am-1=12,m=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.一個(gè)三角形的外接圓半徑R=$\frac{a\sqrt{bc}}{b+c}$,則該三角形的最大內(nèi)角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知直線l的極坐標(biāo)方程為$ρsin({θ+\frac{π}{4}})=2\sqrt{2}$,圓C的參數(shù)方程為:$\left\{\begin{array}{l}x=2cosθ\\ y=-2+2sinθ\end{array}\right.({θ為參數(shù)})$.
(1)判斷直線l與圓C的位置關(guān)系;
(2)若橢圓的參數(shù)方程為$\left\{\begin{array}{l}x=2cosφ\(chéng)\ y=\sqrt{3}sinφ\(chéng)end{array}$(φ為參數(shù)),過(guò)圓C的圓心且與直線l垂直的直線l′與橢圓相交于兩點(diǎn)A,B,求|CA|•|CB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.將函數(shù)y=cos2x+$\sqrt{3}$sin2x(x∈R)的圖象向左平移m(m>0)個(gè)長(zhǎng)度單位后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx(x∈R)..
(1)當(dāng)$x∈[0,\frac{π}{2}]$時(shí),求函數(shù)f(x)的最大值和最小值;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且c=3,f(C)=2,若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若變量x,y滿足x+5y+13=0(-3≤x≤2,且x≠1),則$\frac{y-1}{x-1}$的取值范圍是( 。
A.k≥$\frac{3}{4}$或k≤-4B.-4≤k≤$\frac{3}{4}$C.$\frac{3}{4}$≤k≤4D.-$\frac{3}{4}$≤k≤4

查看答案和解析>>

同步練習(xí)冊(cè)答案