【題目】設(shè)拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F在y軸上,開口向上,焦點(diǎn)到準(zhǔn)線的距離為
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)已知拋物線C過焦點(diǎn)F的動(dòng)直線l交拋物線于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證: 為定值.
【答案】(1) x2=y.
(2)見解析
【解析】
(1)設(shè)出拋物線的方程,由焦點(diǎn)到準(zhǔn)線的距離為可得,結(jié)合焦點(diǎn)在上,即可求得拋物線方程;(2)將直線方程代入拋物線方程,利用韋達(dá)定理及平面向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得為定值.
(1)由焦點(diǎn)到準(zhǔn)線的距離為知p=,2p=,拋物線的標(biāo)準(zhǔn)方程為x2=y.
(2)設(shè)直線l的方程為:y=kx+,A(x1,y1),B(x2,y2).
由
得:x2-kx-=0,∴x1x2=-
∴·=x1x2+y1y2=x1x2+4(x1x2)2=-為定值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)且.
(1)求p,q的值以及函數(shù)的表達(dá)式,并寫出的定義域D;
(2)設(shè)函數(shù),A=,集合,當(dāng)時(shí),求實(shí)數(shù)k的取值范圍;
(3)當(dāng)時(shí),設(shè),數(shù)列的前n項(xiàng)和為,直線的斜率為,是否存在實(shí)數(shù),使對(duì)一切恒成立,若存在,分別求出實(shí)數(shù)的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線與曲線C交于兩點(diǎn).
(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四面體中,,且兩兩互相垂直,點(diǎn)是的中心.
(1)求二面角的大小(用反三角函數(shù)表示);
(2)過作,垂足為,求繞直線旋轉(zhuǎn)一周所形成的幾何體的體積;
(3)將繞直線旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,直線與直線所成角記為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,F關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P,過F作軸的垂線交拋物線于M,N兩點(diǎn),給出下列三個(gè)結(jié)論:
①必為直角三角形;
②直線必與拋物線相切;
③的面積為.其中正確的結(jié)論是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為 ,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),與交于兩點(diǎn)
(1) 求的直角坐標(biāo)方程和的普通方程;
(2) 若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A. 若直線平面,直線平面,則直線不一定平行于直線
B. 若平面不垂直于平面,則內(nèi)一定不存在直線垂直于平面
C. 若平面平面,則內(nèi)一定不存在直線平行于平面
D. 若平面平面,平面平面,,則一定垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:過點(diǎn),且它的焦距是短軸長(zhǎng)的倍.
(1)求橢圓的方程.
(2)若,是橢圓上的兩個(gè)動(dòng)點(diǎn)(,兩點(diǎn)不關(guān)于軸對(duì)稱),為坐標(biāo)原點(diǎn),,的斜率分別為,,問是否存在非零常數(shù),使當(dāng)時(shí),的面積為定值?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線E:,圓C:.
若過拋物線E的焦點(diǎn)F的直線l與圓C相切,求直線l方程;
在的條件下,若直線l交拋物線E于A,B兩點(diǎn),x軸上是否存在點(diǎn)使為坐標(biāo)原點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com