分別以直角三角形的斜邊和兩直角邊所在直線為軸,將三角形旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積依次為V1、V2、V3,則( 。
A、V1=V2+V3
B、V12=V22+V32
C、
1
V12
=
1
V22
+
1
V32
D、
1
V1
=
1
V2
+
1
V3
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:
分析:設(shè)直角三角形的三邊分別為a、b、c,a2+b2=c2,即c為斜邊,分別求得V1、V2、V3的值,可得結(jié)論.
解答: 解:設(shè)直角三角形的三邊分別為a、b、c,a2+b2=c2,即c為斜邊,
則以邊c所在直線為軸,將三角形旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為V1,則V1 =
1
3
π(
ab
c
)
2
•c=
1
3
πa2•b2
1
c

以邊a所在直線為軸,將三角形旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為V2,則V2 =
1
3
πb2•a,
以邊b所在直線為軸,將三角形旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為V3,則V3 =πa2•b,
1
V12
=
1
V22
+
1
V22
,
故選:C.
點(diǎn)評(píng):本題考查幾何體的體積的求法與大小比較,考查計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C:x2+y2=8內(nèi)一點(diǎn)P(-1,2),過(guò)點(diǎn)P的直線l的傾斜角為α,直線l交圓于A,B兩點(diǎn).
(1)求當(dāng)α=
3
4
π
時(shí),弦AB的長(zhǎng);
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),求直線l的方程;
(3)在(2)的情況下,已知直線l′與圓C相切,并且l′⊥l,求直線l′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方形ABCD中,PA⊥底面ABCD,且PA=AB=2,E、F分別是AB與PD的中點(diǎn).
(1)求證:PC⊥AF;
(2)求證:AF∥平面PEC;
(3)求證:PD⊥平面AFE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“x-1≠0”是“(x-1)(x-2)≠0”的( 。
A、充分非必要條件
B、必要非充分條件
C、充分必要條件
D、既不充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將斜邊為
2
的等腰直角三角形繞其一直角邊所在直線旋轉(zhuǎn)一周,所得幾何體的側(cè)面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校50名學(xué)生參加2013年全國(guó)數(shù)學(xué)聯(lián)賽初賽,成績(jī)?nèi)拷橛?0分到140分之間.將成績(jī)結(jié)果按如下方式分成五組:第一組[90,100),第二組[100,110),第五組[130,140].按上述分組方法得到的頻率分布直方圖如圖所示.
(1)若成績(jī)大于或等于100分且小于120分認(rèn)為是良好的,求該校參賽學(xué)生在這次數(shù)學(xué)聯(lián)賽中成績(jī)良好的人數(shù);
(2)若從第一、五組中共隨機(jī)取出兩個(gè)成績(jī),求這兩個(gè)成績(jī)差的絕對(duì)值大于30分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
?
y
=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程
?
y
=bx+a必過(guò)(
.
x
.
y
)
;
④曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;
⑤在一個(gè)2×2列聯(lián)表中,由計(jì)算得k2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%;
其中錯(cuò)誤的個(gè)數(shù)是( 。
本題可以參考兩個(gè)分類變量x和y有關(guān)系的可信度表:
P(k2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinωx+cosωx,如果存在實(shí)數(shù)x1,使得對(duì)任意的實(shí)數(shù)x,都有f(x1)≤f(x)≤f(x1+2010)成立,則ω的最小值為( 。
A、
1
2010
B、
π
2010
C、
1
4020
D、
π
4020

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊經(jīng)過(guò)點(diǎn)(-1,
3
),則sin(α+
π
2
)的值=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案