16.命題“?x∈R,x≤1或x2>4”的否定為“?x∈R,x>1且x2≤4”.

分析 由特稱命題的否定為全稱命題,即可得到.

解答 解:由特稱命題的否定為全稱命題,可得
命題“?x∈R,x≤1或x2>4”的否定為“?x∈R,x>1且x2≤4”.
故答案為:“?x∈R,x>1且x2≤4”.

點(diǎn)評 本題考查命題的否定,注意全稱命題和特稱命題的互化,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)討論f(x)的奇偶性; 
(2)若x≥a,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如果一個幾何體的三視圖是如圖所示(單位:cm)則此幾何體的表面積是( 。
A.$(16+6\sqrt{2})c{{m}^{2}}^{\;}$B.22cm2C.$(12+6\sqrt{2})c{m}^{2}$D.$(18+2\sqrt{3})c{m}^{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)為奇函數(shù),當(dāng)x>0時,f(x)=x2-x,則當(dāng)x<0時,函數(shù)f(x)的最大值為(  )
A.$-\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,$(2\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,則向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影為( 。
A.-$\frac{5}{3}$B.$\frac{5}{4}$C.$-\frac{5}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)全集U={-2,-1,0,1,2},集合M={y|y=2x},N={x|x2-x-2=0},則(∁UM)∩N═(  )
A.{-1}B.{2}C.{-1,2}D.{-1,-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)P是拋物線C1:y2=4x上的動點(diǎn),過P作圓(x-3)2+y2=2的兩條切線,則兩條切線的夾角的最大值為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知 f(x)、g(x)都是定義在 R 上的函數(shù),g(x)≠0,f′(x)g(x)<f(x)g′(x),f(x)=ax g(x),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,則關(guān)于x的方程abx2+$\sqrt{2}$x+2=0(b∈(0,1))有兩個不同實(shí)根的概率為( 。
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,角A、B、C所對的邊長分別為a、b、c,$C=\frac{π}{3}$,a+b=1,則△ABC周長的最小值是( 。
A.$\frac{1}{2}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.$\frac{9}{4}$

查看答案和解析>>

同步練習(xí)冊答案