【題目】定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的一個上界.已知函數(shù),.
(1)求函數(shù)f(x)在區(qū)間上的所有上界構(gòu)成的集合;
(2)若函數(shù)g(x)在[0,+∞)上是以7為上界的有界函數(shù),求實數(shù)a的取值范圍.
【答案】(1)[3,+∞), (2)[﹣9,5]
【解析】
(1)首先求出函數(shù)在區(qū)間的單調(diào)性,再根據(jù)單調(diào)性即可求出函數(shù)的值域,從而求出函數(shù)在區(qū)間上的所有上界構(gòu)成的集合.
(2)將問題轉(zhuǎn)化為在上恒成立,通過換元法求出相應(yīng)的最值即可求出的取值范圍.
(1),
由復合函數(shù)的單調(diào)性法則易知,函數(shù)在上單調(diào)遞減,
∴函數(shù)在區(qū)間上單調(diào)遞減,
∴函數(shù)在區(qū)間上的值域為,
∴,
∴函數(shù)在區(qū)間上的所有上界構(gòu)成的集合為.
(2)由題意知,在上恒成立,即,
則,
∴在上恒成立,
設(shè), ,.
易知,在上為增函數(shù),故,
由知,當時,,為減函數(shù),
故,
綜上,實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左頂點,右焦點分別為,右準線為,
(1)若直線上不存在點,使為等腰三角形,求橢圓離心率的取值范圍;
(2)在(1)的條件下,當取最大值時,點坐標為,設(shè)是橢圓上的三點,且,求:以線段的中心為原點,過兩點的圓方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標方程;
(2)設(shè)圓與直線交于點,若點的坐標為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標方程;
(2)設(shè)圓與直線交于點,若點的坐標為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求證:在上是單調(diào)遞減函數(shù);
(2)若函數(shù)有兩個正零點、,求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2018·日照一模)如圖所示,ABCD-A1B1C1D1是長方體,O是B1D1的中點,直線A1C交平面AB1D1于點M,給出下列結(jié)論:
①A、M、O三點共線;②A、M、O、A1不共面;③A、M、C、O共面;④B、B1、O、M共面.
其中正確結(jié)論的序號為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)
(1)求;
(2)若,且,求的值.
(3)畫出函數(shù)在區(qū)間上的圖像(完成列表并作圖).
(1)列表
x | 0 | |||||
y | -1 | 1 |
(2)描點,連線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com