【題目】在多面體中,四邊形是正方形, , , .

(Ⅰ) 求證: 平面;

(Ⅱ)在線段上確定一點,使得平面與平面所成的角為.

【答案】見解析(Ⅱ)當點滿足時,平面與平面所成角的大小為.

【解析】試題分析:(Ⅰ)在中,由正弦定理得得,在中,可得,即,由此可證明平面.

(Ⅱ)由(Ⅰ)可得, 平面,則平面平面

如圖,過點作平面的垂線,以點為坐標原點, , , 所在直線分別為軸, 軸, 軸建立空間直角坐標系,求出相應點及向量的坐標,設平面的一個法向量,令,得

.

易知平面的一個法向量.由向量的夾角公式

, 化簡得, .

即當點滿足時,平面與平面所成角的大小為.

試題解析: 四邊形是正方形, .

中, ,即

,即,在梯形中,過點作,交于點.

,

中,可求 ,

.

平面,

(Ⅱ)由(Ⅰ)可得, ,

平面,又平面,

平面平面

如圖,過點作平面的垂線,

以點為坐標原點, , 所在直線分別為軸, 軸, 軸建立空間直角坐標系,

, , , , ,.

, ,則.

設平面的一個法向量,則,

,得

.

易知平面的一個法向量.

由已知得 ,

化簡得 .

當點滿足時,平面與平面所成角的大小為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 的左、右焦點分別為,上頂點為,過點垂直的直線交軸負半軸于點,且.

Ⅰ)求橢圓的離心率;

Ⅱ)若過、、三點的圓恰好與直線 相切,求橢圓的方程;

III)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總人數(shù).現(xiàn)對某校高三年級240名學生進行一次測試,共5道客觀題,測試前根據對學生的了解,預估了每道題的難度,如表所示:

題號

1

2

3

4

5

考前預估難度

0.9

0.8

0.7

0.6

0.4

測試后,從中隨機抽取了20名學生的答題數(shù)據進行統(tǒng)計,結果如表:

(Ⅰ)根據題中數(shù)據,估計中240名學生中第5題的實測答對人數(shù);

(Ⅱ)從抽樣的20名學生中隨機抽取2名學生,記這2名學生中第5題答對的人數(shù)為,求的分布列和數(shù)學期望;

(Ⅲ)試題的預估難度和實測難度之間會有偏差.設為第題的實測難度,請用設計一個統(tǒng)計量,并制定一個標準來判斷本次測試對難度的預估是否合理.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方體的棱長為1,點是棱上的動點,是棱上一點,.

(1)求證:

(2)若直線平面,試確定點的位置,并證明你的結論;

(3)設點在正方體的上底面上運動,求總能使垂直的點所形成的軌跡的長度.(直接寫出答案)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)(題文)“你低碳了嗎?”這是某市為倡導建設節(jié)約型社會而發(fā)布的公益廣告里的一句話,活動組織者為了了解這則廣告的宣傳效果,隨機抽取了120名年齡在,,…,的市民進行問卷調查,由此得到的樣本的頻率分布直方圖如圖所示.

(1)根據直方圖填寫頻率分布統(tǒng)計表;

(2)根據直方圖,試估計受訪市民年齡的中位數(shù)(保留整數(shù));

(3)如果按分層抽樣的方法,在受訪市民樣本年齡在中共抽取5名市民,再從這5人中隨機選2人作為本次活動的獲獎者,求年齡在的受訪市民恰好各有一人獲獎的概率.

分組

頻數(shù)

頻率

18

0.15

30

0.2

6

0.05

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大西洋鮭魚每年都要逆流而上,游回產地產卵,經研究發(fā)現(xiàn)鮭魚的游速可以表示為函數(shù)y=log3,單位是m/s,θ是表示魚的耗氧量的單位數(shù).

(1)當一條鮭魚的耗氧量是900個單位時,它的游速是多少?

(2)計算一條魚靜止時耗氧量的單位數(shù)。

(3)某條鮭魚想把游速提高1 m/s,那么它的耗氧量的單位數(shù)是原來的多少倍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,等腰的底邊,高,點是線段上異于點的動點,點邊上,且,現(xiàn)沿將△折起到△的位置,使,記 表示四棱錐的體積.

(1)的表達式;(2)為何值時, 取得最大,并求最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)>0, ≠1, ≠﹣1),是定義在(﹣1,1)上的奇函數(shù).

(1)求實數(shù)的值;

(2)當=1時,判斷函數(shù)在(﹣1,1)上的單調性,并給出證明;

(3)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點,是以為底邊的等腰三角形,點在直線:上.

(1)求邊上的高所在直線的方程;

(2)求的面積.

查看答案和解析>>

同步練習冊答案