(本小題滿分12分)
如圖,圓與軸相切于點,與軸正半軸相交于兩點(點在點的左側(cè)),且.
(Ⅰ)求圓的方程;
(Ⅱ)過點任作一條直線與橢圓相交于兩點,連接,求證:.
(Ⅰ).(Ⅱ)見解析。
【解析】(I)由于圓與軸相切于點, 所以圓心坐標為,然后根據(jù)
建立關(guān)于r的方程求出r值,圓的標準確定.
(2)將y=0代入圓的方程求出M,N的坐標,然后再分兩種情況證明.
(i) 當軸時,由橢圓對稱性可知.
當與軸不垂直時,可設直線的方程為.證明,然后直線方程與橢圓方程聯(lián)立借助韋達定理來解決即可.
(Ⅰ)設圓的半徑為(),依題意,圓心坐標為.································ 1分
∵
∴ ,解得.····································································· 3分
∴ 圓的方程為.······················································· 5分
(Ⅱ)把代入方程,解得,或,
即點,.····················································································· 6分
(1)當軸時,由橢圓對稱性可知.······························· 7分
(2)當與軸不垂直時,可設直線的方程為.
聯(lián)立方程,消去得,.······················ 8分
設直線交橢圓于兩點,則
,.······································································· 9分
∵ ,
∴
.······························································· 10分
∵,
11分
∴ ,.····························································· 12分
綜上所述,. 13分
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com