4.下列函數(shù)定義域為(-∞,+∞)的是(  )
A.y=$\frac{1}{{x}^{2}}$B.y=$\sqrt{x+2}$C.y=$\root{3}{x}$D.y=$\sqrt{{x}^{2}-1}$

分析 判斷選項函數(shù)的定義域,即可得到結(jié)果.

解答 解:y=$\frac{1}{{x}^{2}}$,x≠0,A不滿足題意;
y=$\sqrt{x+2}$,x≥-2,B不滿足題意;
y=$\root{3}{x}$;函數(shù)定義域為(-∞,+∞),成立;
y=$\sqrt{{x}^{2}-1}$,定義域為:(-∞,-1]∪[1,+∞)不滿足題意.
故選:C.

點評 本題考查函數(shù)的定義域的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,若a:b:c=1:2:$\sqrt{7}$,則角C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=x2在區(qū)間[2,3]上的最大值與最小值的差為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.改描述法為列舉法:
(1){大于1小于10的奇數(shù)}={3,5,7,9};
(2){x|0<x≤4,x∈N}={1,2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{x-1}{ax-1}$(x∈R,x≠$\frac{1}{a}$,a為給定的實數(shù)),求證:y=f(x)的圖象關(guān)于直線y=x對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)雙曲線的焦點坐標(biāo)為(-6,0),(6,0),且雙曲線過點A(-5,0),求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=x2-m,若f(0)=1,則m的值等于(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)$\overrightarrow{a}$⊥$\overrightarrow$,<$\overrightarrow{a}$,$\overrightarrow{c}$>=$\frac{π}{3}$,<$\overrightarrow$,$\overrightarrow{c}$>=$\frac{π}{2}$.且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=3,則向量$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$的模為$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)集合A={1,2},B={x|x2+2(a+1)x+(a2-5)=0}.
(1)若A∩B={2},求實數(shù)a的值;
(2)是否存在實數(shù)a,使A∩B=A?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案