【題目】在正三棱錐P﹣ABC中,已知底面等邊三角形的邊長為6,側(cè)棱長為4.
(1)求證:PA⊥BC;
(2)求此三棱錐的全面積和體積.

【答案】
(1)證明:取BC的中點M,連AM、BM.

∵△ABC是等邊三角形,

∴AM⊥BC.

又∵PB=PC,

∴PM⊥BC.

∵AM∩PM=M,

∴BC⊥平面PAM,

則PA⊥BC


(2)解:記O是等邊三角形的中心,則PO⊥平面ABC.

∵△ABC是邊長為6的等邊三角形,

,

,


【解析】(1)取BC的中點M,連AM、BM.由△ABC是等邊三角形,可得AM⊥BC.再由PB=PC,得PM⊥BC.利用線面垂直的判定可得BC⊥平面PAM,進一步得到PA⊥BC;(2)記O是等邊三角形的中心,則PO⊥平面ABC.由已知求出高,可求三棱錐的體積.求出各面的面積可得三棱錐的全面積.
【考點精析】解答此題的關(guān)鍵在于理解直線與平面垂直的性質(zhì)的相關(guān)知識,掌握垂直于同一個平面的兩條直線平行.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,且底面ABCD為平行四邊形,若∠DAB=60°,AB=2,AD=1.
(1)求證:PA⊥BD;
(2)若∠PCD=45°,求點D到平面PBC的距離h.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)F(x)= ,(a為實數(shù)).
(1)根據(jù)a的不同取值,討論函數(shù)y=f(x)的奇偶性,并說明理由;
(2)若對任意的x≥1,都有1≤f(x)≤3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合Ma={f(x)|存在正實數(shù)a,使得定義域內(nèi)任意x都有f(x+a)>f(x)}.
(1)若f(x)=2x﹣x2 , 試判斷f(x)是否為M1中的元素,并說明理由;
(2)若 ,且g(x)∈Ma , 求a的取值范圍;
(3)若 (k∈R),且h(x)∈M2 , 求h(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C以原點為中心,左焦點F的坐標是(﹣1,0),長軸長是短軸長的 倍,直線l與橢圓C交于點A與B,且A、B都在x軸上方,滿足∠OFA+∠OFB=180°;

(1)求橢圓C的標準方程;
(2)對于動直線l,是否存在一個定點,無論∠OFA如何變化,直線l總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C的中心為原點O,F(xiàn)(﹣2 ,0)為C的左焦點,P為C上一點,滿足|OP|=|OF|且|PF|=4,則橢圓C的方程為(
A. =1
B. =1
C. =1
D. =1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn , 其中Sn是數(shù)列{an}的前n項和.
(1)若數(shù)列{an}是首項為 ,公比為﹣ 的等比數(shù)列,求數(shù)列{bn}的通項公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1 , 并寫出數(shù)列{an}的通項公式;
(3)在(2)的條件下,設(shè)cn= , 求證:數(shù)列{cn}中的任意一項總可以表示成該數(shù)列其他兩項之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的程序框圖運行程序后,輸出的結(jié)果是31,則判斷框中的整數(shù)H=(

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2cos( ﹣x)cos(x+ )+ . (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0, ]上的值域.

查看答案和解析>>

同步練習冊答案