在數(shù)列{an}中,數(shù)學(xué)公式
(Ⅰ)設(shè)數(shù)學(xué)公式,證明:數(shù)列{bn}是等差數(shù)列;
(Ⅱ)求數(shù)列數(shù)學(xué)公式的前n項(xiàng)和Sn

解:(Ⅰ)由已知an+1=3an+3n得:
bn+1=
=
=+1
=bn+1,
又b1=a1=1,因此{(lán)bn}是首項(xiàng)為1,公差為1的等差數(shù)列…(6分)
(Ⅱ)由(1)得=n,
=3n-1,…(8分)
∴Sn=1+31+32+…+3n-1==…(12分)
分析:(Ⅰ)依題意可求得bn+1=bn+1,由等差數(shù)列的定義即可得證數(shù)列{bn}是等差數(shù)列;
(Ⅱ)可求得=3n-1,利用等比數(shù)列的求和公式即可求得數(shù)列的前n項(xiàng)和Sn
點(diǎn)評(píng):本題考查等差數(shù)列的證明,考查等比數(shù)列的求和,考查推理與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、已知點(diǎn)(n,an)(n∈N*)都在直線3x-y-24=0上,那么在數(shù)列an中有a7+a9=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,an+1=an+ln(1+
1n
)
,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、在數(shù)列{an}中,若a1=1,an+1=an+2(n≥1),則該數(shù)列的通項(xiàng)an=
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中a1=
1
2
a2=
1
5
,且an+1=
(n-1)an
n-2an
(n≥2)

(1)求a3、a4,并求出數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
anan+1
an
+
an+1
,求證:對(duì)?n∈N*,都有b1+b2+…bn
3n-1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一般地,在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對(duì)任意正整數(shù)m均成立,那么就稱{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),設(shè)S2009為其前2009項(xiàng)的和,則當(dāng)數(shù)列{xn}的周期為3時(shí),S2009=
1339+a
1339+a

查看答案和解析>>

同步練習(xí)冊(cè)答案