精英家教網 > 高中數學 > 題目詳情
已知正方體ABCD-A1B1C1D1,則四面體A1-C1BD在面A1B1C1D1上的正投影的面積與該四面體表面積之比是
3
6
3
6
分析:所成正方體的棱長,求出正四面體的表面積,求出射影面積,即可得到比值.
解答:解:設正方體的棱長為a,所以四面體A1-C1BD的表面積為:
3
4
×(
2
a)
2
=2
3
a2,四面體A1-C1BD在面A1B1C1D1上的正投影的面積是:a2,
所以四面體A1-C1BD在面A1B1C1D1上的正投影的面積與該四面體表面積之比是:
a2
2
3
a2
=
3
6

故答案為:
3
6
點評:本題是基礎題,考查正方體的面積,正四面體的表面積的求法,考查計算能力,常考題型.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點P在平面DD1C1C內,PD1=PC1=
2
.求證:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E、F分別為BB1、CC1的中點,那么直線AE與D1F所成角的余弦值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E為棱CC1的動點.
(1)當E恰為棱CC1的中點時,試證明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一個點E,可以使二面角A1-BD-E的大小為45°?如果存在,試確定點E在棱CC1上的位置;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.
(1)求證:C1O∥面AB1D1;
(2)求異面直線AD1與 C1O所成角的大。

查看答案和解析>>

同步練習冊答案