【題目】如圖,動物園要建造一面靠墻的兩間相同的矩形熊貓居室,如果可供建造圍墻的材料總長是

用寬(單位)表示所建造的每間熊貓居室的面積(單位);

怎么設(shè)計才能使所建造的每間熊貓居室面積最大?并求出每間熊貓居室的最大面積?

【答案】(1)(2)使每間熊貓居室的寬為,每間居室的長為15m時所建造的每間熊貓居室面積最大;每間熊貓居室的最大面積為150

【解析】試題分析:(1)根據(jù)周長求出居室的長,再根據(jù)矩形面積公式得函數(shù)關(guān)系式,最后根據(jù)實際意義確定定義域(2)根據(jù)對稱軸與定義區(qū)間位置關(guān)系確定最值取法:在對稱軸處取最大值

試題解析:解:(1)設(shè)熊貓居室的寬為(單位),由于可供建造圍墻的材料總長是,則每間熊貓居室的長為(單位m)

所以每間熊貓居室的面積

(2)

二次函數(shù)圖象開口向下,對稱軸,

時, ,

所以使每間熊貓居室的寬為,每間居室的長為15m時所建造的每間熊貓居室面積最大;每間熊貓居室的最大面積為150

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1過點A(0,1),l2過點B(5,0),如果l1l2,且l1與l2的距離為5,求l1、l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z=(m2+5m﹣6)+(m2﹣2m﹣15)i,(i為虛數(shù)單位,m∈R)
(1)若復(fù)數(shù)Z在復(fù)平面內(nèi)對應(yīng)的點位于第一、三象限的角平分線上,求實數(shù)M的值;
(2)當實數(shù)m=﹣1時,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形 底面,該四棱錐的正視圖和側(cè)視圖均為腰長為6的等腰直角三角形.

(1)畫出相應(yīng)的俯視圖,并求出該俯視圖的面積;

(2)求證: ;

(3)求四棱錐外接球的直徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:x2+2x﹣3>0;命題q: >1,若“(¬q)∧p”為真,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了調(diào)查喜歡語文學(xué)科與性別的關(guān)系,隨機調(diào)查了一些學(xué)生情況,具體數(shù)據(jù)如表:

調(diào)查統(tǒng)計

不喜歡語文

喜歡語文

13

10

7

20

為了判斷喜歡語文學(xué)科是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2的觀測值k= ≈4.844,因為k≥3.841,根據(jù)下表中的參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

判定喜歡語文學(xué)科與性別有關(guān)系,那么這種判斷出錯的可能性為(
A.95%
B.50%
C.25%
D.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查大學(xué)生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從武漢市大學(xué)生中隨機抽取100位同學(xué)進行了抽樣調(diào)查,結(jié)果如下:

微信群數(shù)量

頻數(shù)

頻率

0至5個

0

0

6至10個

30

0.3

11至15個

30

0.3

16至20個

a

c

20個以上

5

b

合計

100

1

(Ⅰ)求a,b,c的值;
(Ⅱ)以這100個人的樣本數(shù)據(jù)估計武漢市的總體數(shù)據(jù)且以頻率估計概率,若從全市大學(xué)生(數(shù)量很大)中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過15個的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為;命題q:函數(shù)f(x)=(4a2+7a﹣1)x是增函數(shù),若¬p∧q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,底面ABCD是邊長為 的正方形,AA1=3,E是AA1的中點,過C1作C1F⊥平面BDE與平面ABB1A1交于點F,則 =

查看答案和解析>>

同步練習(xí)冊答案