【題目】已知圓C經(jīng)過點(diǎn)A(2,-1),和直線xy1相切,且圓心在直線y=-2x.

(1)求圓C的方程;

(2)已知直線l經(jīng)過(2,0)點(diǎn),并且被圓C截得的弦長為2,求直線l的方程.

【答案】(1)(x1)2(y2)22;(2)x23x-4y-60.

【解析】

1)由條件可知圓心的坐標(biāo)為,再根據(jù)條件轉(zhuǎn)化為關(guān)于的方程,根據(jù)圓的圓心和半徑寫出圓的標(biāo)準(zhǔn)方程;

2)分斜率不存在和斜率存在兩種情況討論,利用弦長公式可知圓心到直線的距離是1,求直線方程.

(1)設(shè)圓心的坐標(biāo)為C(a,-2a)

.

化簡,得a22a10,解得a1.

所以C點(diǎn)坐標(biāo)為(1,-2)

半徑r|AC|.

故圓C的方程為(x1)2(y2)22.

(2)①當(dāng)直線l的斜率不存在時(shí),直線l的方程為x2,此時(shí)直線l被圓C截得的弦長為2,

滿足條件.

②當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為ykx—2),即 kx-y-2k=0

由題意得,解得k,

則直線l的方程為yx-2.

綜上所述,直線l的方程為x23x-4y-60.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)《人民網(wǎng)》報(bào)道,“美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動主導(dǎo)了地球變綠.”據(jù)統(tǒng)計(jì),中國新增綠化面積的420/0來自于植樹造林,下表是中國十個(gè)地區(qū)在2017年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃

按造林方式分

地區(qū)

造林總面積

人工造林

飛播造林

新封山育林

退化林修復(fù)

人工更新

內(nèi)蒙

618484

311052

74094

136006

90382

6950

河北

583361

345625

33333

135107

65653

3643

河南

149002

97647

13429

22417

15376

133

重慶

226333

100600

62400

63333

陜西

297642

184108

33602

63865

16067

甘肅

325580

260144

57438

7998

新疆

263903

118105

6264

126647

10796

2091

青海

178414

16051

159734

2629

寧夏

91531

58960

22938

8298

1335

北京

19064

10012

4000

3999

1053

(Ⅰ)請根據(jù)上述數(shù)據(jù),分別寫出在這十個(gè)地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);

(Ⅱ)在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),求該地區(qū)人工造林面積與造林總面積的比值不足50%的概率是多少?

(Ⅲ)從上表新封山育林面積超過十萬公頃的地區(qū)中,任選兩個(gè)地區(qū),求至少有一個(gè)地區(qū)退化林修復(fù)面積超過五萬公頃的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓過點(diǎn).

1)求橢圓的方程;

2、為橢圓的左、右焦點(diǎn),直線與橢圓交于兩點(diǎn),求△面積的最大值;

3)求動點(diǎn)的軌跡方程,使得過點(diǎn)存在兩條互相垂直的直線、,且都與橢圓只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體中,,,,點(diǎn)分別在上,

1)求直線所成角的余弦值;

2)過點(diǎn)的平面與此長方體的表面相交,交線圍成一個(gè)正方形,求平面把該長方體分成的兩部分體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的前n項(xiàng)和為,數(shù)列滿足.

1)求數(shù)列的通項(xiàng)公式;

2)數(shù)列滿足,它的前n項(xiàng)和為,若存在正整數(shù)n,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F2,短軸的一個(gè)端點(diǎn)為P,PF1F2內(nèi)切圓的半徑為,設(shè)過點(diǎn)F2的直線l與被橢圓C截得的線段為RS,當(dāng)lx軸時(shí),|RS|3.

(1) 求橢圓C的標(biāo)準(zhǔn)方程;

(2) 若點(diǎn)M(0m),(),過點(diǎn)M的任一直線與橢圓C相交于兩點(diǎn)A.By軸上是否存在點(diǎn)N0,n)使∠ANM=∠BNM恒成立?若存在,判斷m、n應(yīng)滿足關(guān)系;若不存在,說明理由。

(3) 在(2)條件下m=1時(shí),求ABN面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中,是菱形, 是矩形,平面,,,.

(1)求證:平面平面 ;

(2)在線段上取一點(diǎn),當(dāng)二面角的大小為時(shí),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個(gè)數(shù)是_________.

1)命題“若,則方程有實(shí)數(shù)根”的逆否命題為“若方程無實(shí)數(shù)根,則.

2)命題“,”的否定“,.

3)若為假命題,則,均為假命題.

4)“”是“直線與直線平行”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面中兩條直線相交于點(diǎn)O,對于平面上任意一點(diǎn)M,若x,y分別是M到直線的距離,則稱有序非負(fù)實(shí)數(shù)對(x,y)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個(gè)命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且只有1個(gè);

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q的點(diǎn)有且只有2個(gè);

③若pq≠0則“距離坐標(biāo)”為p,q的點(diǎn)有且只有4個(gè).

上述命題中,正確命題的是______.(寫出所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案