【題目】已知定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(0)=1,則不等式f(x)<ex的解集為(
A.(﹣∞,e4
B.(e4 , +∞)
C.(﹣∞,0)
D.(0,+∞)

【答案】D
【解析】解:設(shè)g(x)= (x∈R), 則g′(x)=
∵f′(x)<f(x),
∴f′(x)﹣f(x)<0
∴g′(x)<0,
∴y=g(x)在定義域上單調(diào)遞減
∵f(x)<ex
∴g(x)<1
又∵g(0)= =1
∴g(x)<g(0)
∴x>0
故選:D.
【考點精析】關(guān)于本題考查的基本求導(dǎo)法則,需要了解若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有一個容積V一定的鋁合金蓋的圓柱形鐵桶,已知單位面積鋁合金的價格是鐵的3倍,當(dāng)總造價最少時,桶高為(
A.
B.
C.2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,a為正常數(shù).
(1)若f(x)=lnx+φ(x),且a= ,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在(1)中當(dāng)a=0時,函數(shù)y=f(x)的圖象上任意不同的兩點A(x1 , y1),B(x2 , y2),線段AB的中點為C(x0 , y0),記直線AB的斜率為k,試證明:k>f'(x0).
(3)若g(x)=|lnx|+φ(x),且對任意的x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,數(shù)列{an}滿足a1=1,an+1=f( ),n∈N*
(1)求數(shù)列{an}的通項公式;
(2)令bn= (n≥2),b1=3,Sn=b1+b2++bn , 若Sn 對一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2 + sinωx﹣ (ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒有零點,則ω的取值范圍是(
A.(0, ]
B.(0, ]∪[ ,
C.(0, ]
D.(0, ]∪[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,點的極坐標(biāo)方程為.

(1)求點的直角坐標(biāo),并求曲線的普通方程;

(2)設(shè)直線與曲線的兩個交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應(yīng)等級進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

頻數(shù)

6

24

(Ⅰ)求, , 的值;

(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談.現(xiàn)再從這10人這任選4人,記所選4人的量化總分為,求的分布列及數(shù)學(xué)期望

(Ⅲ)某評估機(jī)構(gòu)以指標(biāo),其中表示的方差)來評估該校安全教育活動的成效.若,則認(rèn)定教育活動是有效的;否則認(rèn)定教育活動無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=﹣ eax(a>0,b>0)的圖象在x=0處的切線與圓x2+y2=1相切,則a+b的最大值是(
A.4
B.2
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,點E,F(xiàn)分別為BC、PD的中點,若PA=AD=4,AB=2.
(1)求證:EF∥平面PAB.
(2)求直線EF與平面PCD所成的角.

查看答案和解析>>

同步練習(xí)冊答案