已知向量
(1)當時,求的值; 
(2)求函數(shù)上的值域.

(1);(2)

解析試題分析:(1)由向量共線的充要條件得,,從而可求出,進而由正切的二倍角公式求;(2)由已知條件得,,利用向量坐標的數(shù)量積運算,得
,利用正弦的二倍角公式和余弦的降冪公式,將函數(shù)化為的形式,再根據(jù),得的范圍,再結合的圖象,求的范圍,進而求出函數(shù)的值域.
(1)∵,∴,∴,故
(2)
,∵,∴,∴,,∴的值域是
考點:1、向量數(shù)量積的坐標運算;2、正弦的二倍角公式和余弦的降冪公式;3、三角函數(shù)的圖象和性質.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=2cos2x+sin2x-+1(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)的單調遞增區(qū)間;
(3)若x∈[-,],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)化簡;
(2)若是第三象限角,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的值;
(2)當時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(1)求函數(shù)的周期;(2)求函數(shù)的單調遞增區(qū)間;(3)若時,的最小值為– 2 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,某污水處理廠要在一正方形污水處理池內修建一個三角形隔離區(qū)以投放凈化物質,其形狀為三角形,其中位于邊上,位于邊上.已知米,,設,記,當越大,則污水凈化效果越好.
(1)求關于的函數(shù)解析式,并求定義域;
(2)求最大值,并指出等號成立條件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)若,求函數(shù)的解析式;
(2)若時,的圖像與軸有交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若函數(shù),非零向量,我們稱為函數(shù)的“相伴向量”,為向量的“相伴函數(shù)”.
(1)已知函數(shù)的最小正周期為,求函數(shù)的“相伴向量”;
(2)記向量的“相伴函數(shù)”為,將圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象上所有點向左平移個單位長度,得到函數(shù),若,求的值;
(3)對于函數(shù),是否存在“相伴向量”?若存在,求出“相伴向量”;
若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),的圖象關于直線對稱,求值.

查看答案和解析>>

同步練習冊答案