解:(1)當(dāng)a=1時(shí),函數(shù)f(x)=x-lnx,,x∈(0,+∞)
∵
,令f'(x)=0得x=(12分)
∵當(dāng)x∈(0,1)時(shí),f'(x)<0∴函數(shù)f(x)在(0,1)上為減函數(shù)
∵當(dāng)x∈(1,+∞)時(shí)f'(x)>0∴函數(shù)f(x)在(1,+∞)上為增函數(shù)
∴當(dāng)x=1時(shí),函數(shù)f(x)有最小值,f(x)
最小值=f(1)=1(4分)
(2)∵
,
若a≤0,則對(duì)任意的x∈[1,+∞)都有f'(x)<0,∴函數(shù)f(x)在[1,+∞)上為減函數(shù)
∴函數(shù)f(x)在[1,+∞)上有最大值,沒有最小值,f(x)
最大值=f(1)=a;(6分)
若a>0,令f'(x)=0得
當(dāng)0<a<1時(shí),
,當(dāng)
時(shí)f'(x)<0,函數(shù)f(x)在
上為減函數(shù)
當(dāng)
時(shí)f'(x)>0∴函數(shù)f(x)在
上為增函數(shù)
∴當(dāng)
時(shí),函數(shù)f(x)有最小值,
(8分)
當(dāng)a≥1時(shí),
在[1,+∞)恒有f'(x)≥0
∴函數(shù)f(x)在[1,+∞)上為增函數(shù),函數(shù)f(x)在[1,+∞)有最小值,f(x)
最小值=f(1)=a.(9分)
綜上得:當(dāng)a≤0時(shí),函數(shù)f(x)在[1,+∞)上有最大值,f(x)
最大值=a;
當(dāng)0<a<1時(shí),函數(shù)f(x)有最小值,
;
當(dāng)a≥1時(shí),函數(shù)f(x)在[1,+∞)有最小值,f(x)
最小值=a.(10分)
(3)證明:由(1)知函數(shù)f(x)=x-lnx在(0,+∞)上有最小值1
即對(duì)任意的x∈(0,+∞)都有x-lnx≥1,即x-1≥lnx,(12分)
當(dāng)且僅當(dāng)x=1時(shí)“=”成立
∵n∈N
*∴
且
∴
∴對(duì)任意的n∈N
*都有
.(14分)
分析:(1)把a(bǔ)=1代入求出其導(dǎo)函數(shù),得出其在定義域上的單調(diào)性即可求出函數(shù)f(x)的最值;
(2)先求出其導(dǎo)函數(shù)
,通過討論a的取值得出函數(shù)在[1,+∞)上的單調(diào)性,進(jìn)而求出函數(shù)f(x)在[1,+∞)上的最值;
(3)先由(1)知對(duì)任意的x∈(0,+∞)都有x-lnx≥1,即x-1≥lnx,再令x=
代入x-1≥lnx即可證明結(jié)論.
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解函數(shù)的單調(diào)區(qū)間、極值、最值問題,是函數(shù)和導(dǎo)數(shù)這一章最基本的知識(shí),也是教學(xué)中的重點(diǎn)和難點(diǎn).