已知f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1處取最大值,則( 。
A、f(x-1)一定是奇函數(shù)
B、f(x-1)一定是偶函數(shù)
C、f(x+1)一定是奇函數(shù)
D、f(x+1)一定是偶函數(shù)
考點(diǎn):正弦函數(shù)的圖象
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)的圖象和性質(zhì),即可得到結(jié)論.
解答: 解:∵函數(shù)f(x)在x=1處取最大值,
∴x=1是函數(shù)f(x)的一條對(duì)稱(chēng)軸,
將函數(shù)f(x)向左平移1個(gè)單位,得到函數(shù)f(x+1)的圖象,此時(shí)函數(shù)關(guān)于y軸對(duì)稱(chēng),則函數(shù)為偶函數(shù).
故選:D
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)函數(shù)最值和對(duì)稱(chēng)軸之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax+a+2,
(1)若f(x)≤0的解集A⊆[0,3],求實(shí)數(shù)a的取值范圍;
(2)若g(x)=f(x)+|x2-1|在區(qū)間(0,3)內(nèi)有兩個(gè)零點(diǎn)x1,x2(x1<x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2-x,(-1<x<4)值域是(  )
A、[-
1
4
,20 )
B、(2,12)
C、( 2,20)
D、[-
1
4
,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)和y=g(x)在[-2,2]上的圖象如圖所示:給出下列四個(gè)命題:

①方程f[g(x)]=0有且僅有6個(gè)根;  
②方程g[f(x)]=0有且僅有3個(gè)根;
③方程f[f(x)]=0有且僅有7個(gè)根;  
④方程g[g(x)]=0有且僅有4個(gè)根.
其中正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在研究性學(xué)習(xí)中,我校高三某班的一個(gè)課題研究小組做“關(guān)于橫波的研究實(shí)驗(yàn)”.根據(jù)實(shí)驗(yàn)記載,他們觀察到某一時(shí)刻的波形曲線符合函數(shù)f(x)=2sin(ωx+φ)的圖象,其部分圖象如圖所示,則f(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cosx+sinx,2sinx),
b
=(cosx-sinx,-cosx),f(x)=
a
b
,
(1)求f(x)的最小正周期;
(2)當(dāng)x∈[
π
4
,
4
]時(shí),求f(x)的最小值以及取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果在約束條件
x-y+1≥0
x+y-2≤0
ax-y≤0
  
(0<a<1)下,目標(biāo)函數(shù)x+ay最大值是
5
3
,則a=( 。
A、
2
3
B、
1
3
C、
1
2
 
 
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,當(dāng)x1=6,x2=9,p=8.5時(shí),x3等于(  )
A、8B、4C、10D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a x2-3x-3(a>0,且a≠1),在x∈[1,3]時(shí)有最小值
1
8
,求a的值及f(x)最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案