已知函數(shù).
(1)求函數(shù)的極值;
(2)定義:若函數(shù)在區(qū)間上的取值范圍為,則稱區(qū)間為函數(shù)的“域同區(qū)間”.試問函數(shù)在上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請說明理由.
(1),;(2)不存在,詳見解析.
解析試題分析:(1)先求出函數(shù)的定義域與導(dǎo)數(shù),求出極值點后,利用圖表法確定函數(shù)的單調(diào)性,從而確定函數(shù)的極大值與極小值;(2)結(jié)合(1)中的結(jié)論可知,函數(shù)在區(qū)間上單調(diào)遞增,根據(jù)定義得到,,問題轉(zhuǎn)化為求方程在區(qū)間上的實數(shù)根,若方程的根的個數(shù)小于,則不存在“域同區(qū)間”;若上述方程的根的個數(shù)不少于,則存在“域同區(qū)間”,并要求求出相應(yīng)的根,從而確定相應(yīng)的“域同區(qū)間”.
試題解析:(1),定義域為,
且,
令,解得或,列表如下:
故函數(shù)在處取得極大值,即, 增 極大值 減 極小值 增
函數(shù)
科目:高中數(shù)學(xué) 來源: 題型:解答題
某建筑公司要在一塊寬大的矩形地面(如圖所示)上進行開發(fā)建設(shè),陰影部分為一公共設(shè)施建設(shè)不能開發(fā),且要求用欄柵隔開(欄柵要求在一直線上),公共設(shè)施邊界為曲線f(x)=1-ax2(a>0)的一部分,欄柵與矩形區(qū)域的邊界交于點M、N,交曲線于點P,設(shè)P(t,f(t)).
(1)將△OMN(O為坐標(biāo)原點)的面積S表示成t的函數(shù)S(t);
(2)若在t=處,S(t)取得最小值,求此時a的值及S(t)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=,其中a為正實數(shù).
①當(dāng)a=時,求f(x)的極值點;②若f(x)為R上的單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時,求的最小值;
(2)在區(qū)間(1,2)內(nèi)任取兩個實數(shù)p,q,且p≠q,若不等式>1恒成立,求實數(shù)a的取值范圍;
(3)求證:(其中)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).對于任意實數(shù)x恒有
(1)求實數(shù)的最大值;
(2)當(dāng)最大時,函數(shù)有三個零點,求實數(shù)k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2-ln x,x∈(0,e],其中e是自然對數(shù)的底數(shù),a∈R.
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)是否存在實數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=.
(1)確定y=f(x)在(0,+∞)上的單調(diào)性;
(2)若a>0,函數(shù)h(x)=xf(x)-x-ax2在(0,2)上有極值,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com